Caspian Journal of Mathematical Sciences (CJMS)
University of Mazandaran, Iran
http://cjms.journals.umz.ac.ir
ISSN: 2676-7260
CJMS. 11(1)(2022), 203-209

Some inequalities on the order of the higher multiplier of groups

Homayoon Arabyani ${ }^{1}$
${ }^{1}$ Department of Mathematics, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran;

Abstract

The Schur multiplier $\mathcal{M}(G)$ of a group G was introduced by Schur in 1904 during his works on projective representations of groups. Ellis extended the theory of the Schur multiplier for a pair of groups. Several authors generalized the concept of the Schur multiplier of a pair of groups to the c-nilpotent multiplier of a pair of groups. This was a motivation to define the Baer-invariant of the pair (N, G) with respect to a variety of groups. In this paper, we prove some inequalities for the order of the c-nilpotent multiplier of a pair of groups.

Keywords: Pair of groups, c-nilpotent multiplier, p-groups.
2020 Mathematics subject classification: 20F18; 20E34.

1. Introduction and Preliminaries

Let $1 \rightarrow R \rightarrow F \rightarrow G \rightarrow 1$ be a free presentation of a group G. Then, the c-nilpotent multiplier of G is defined as

$$
\mathcal{M}^{(c)}(G)=\frac{\gamma_{c+1}(F) \cap R}{\gamma_{c+1}(R, F)},
$$

in which $\gamma_{c+1}(F)$ is the $(c+1)$-th term of the lower central series of F and $\gamma_{1}(R, F)=R, \gamma_{c+1}(R, F)=\left[\gamma_{c}(R, F), F\right]$, inductively. If $c=1$,

[^0]then $\mathcal{M}^{(c)}(G)=\mathcal{M}(G)$ is celled the Schur multiplier of G (see 3, 8, for more information).

Let (N, G) be a pair of grouos, in which N is a normal subgroup of G. Ellis defined the Schur multiplier of a pair (N, G) to be the abelian group $\mathcal{M}(N, G)$ appearing in the following exact sequence

$$
\begin{aligned}
H_{3}(G) & \rightarrow H_{3}\left(\frac{G}{N}\right) \rightarrow \mathcal{M}(N, G) \rightarrow \mathcal{M}(G) \rightarrow \mathcal{M}\left(\frac{G}{N}\right) \\
& \rightarrow \frac{N}{[N, G]} \rightarrow(G)^{a b} \rightarrow\left(\frac{G}{N}\right)^{a b} \rightarrow 1,
\end{aligned}
$$

in which $H_{3}(G)$ is the third homology of G with integer coefficients. Let $1 \rightarrow R \rightarrow F \rightarrow G \rightarrow 1$ be a free presentation of G and S be a normal subgroup of F with $N \cong S / R$. If N admits a complement in G then

$$
\mathcal{M}(N, G) \cong \frac{R \cap[S, F]}{[R, F]} .
$$

If $N=G$, then $\mathcal{M}(G, G)=\mathcal{M}(G)$ is the usual Schur multiplier of G.
Let G and N be two groups with an action of G on N. Then, the G-commutator subgroup and G-center subgroup of N are defined, as follows:

$$
\begin{gathered}
{[N, G]=\left\langle[n, g]=n^{g} n^{-1} \mid n \in N, g \in G\right\rangle,} \\
Z(N, G)=\left\{n \in N \mid n^{g}=n, \forall g \in G\right\} .
\end{gathered}
$$

Let (N, G) be a pair of groups, and S be a normal subgroup of F with $N \cong S / R$. If N admits a complement in G, then the c-nilpotent multiplier of the pair (N, G) is defined as

$$
\mathcal{M}^{(c)}(N, G)=\frac{R \cap\left[S,{ }_{c} F\right]}{\left[R,{ }_{c} F\right]}
$$

where, $\left[X,{ }_{c} Y\right]=[X, \underbrace{Y, \cdots, Y}_{c \text {-times }}]$. One can check that $\mathcal{M}^{(c)}(N, G)$ is abelian and independent of the free presentation of G. In particular, if $N=G$, then $\mathcal{M}^{(c)}(G, G)=\mathcal{M}^{(c)}(G)$ is the c-nilpotent multiplier of G. (See [1, 2, 4, 7, 9, 10, 11] for more information). Let (N, G) be a pair of groups, in which N is a normal subgroup of G. We define the lower central series of normal subgroups of N as follows

$$
N=[N, 0 G] \supseteq[N, G] \supseteq[N, G, G] \supseteq \cdots \supseteq\left[N,{ }_{c} G\right] \supseteq \cdots,
$$

where $\left[N,{ }_{c} G\right]=\gamma_{c+1}(N, G)=[N, \underbrace{G, \ldots, G}_{c \text {-times }}], c>0$. Similarly, we define the upper central series of N in G as follows

$$
0=Z_{0}(N, G) \subseteq Z_{1}(N, G) \subseteq \cdots \subseteq Z_{c}(N, G) \subseteq \cdots,
$$

where, $Z_{c}(N, G)=\left\{n \in N \mid\left[n, g_{1}, \ldots, g_{c}\right]=1\right.$ for all $\left.g_{1}, \ldots, g_{c} \in G\right\}$.
Let (N, G) be a pair of groups. A relative c-central extension of the pair (N, G) is a homomorphism $\sigma: M \rightarrow G$ together with an action of G on M such that
(i) $\sigma(M)=N$
(ii) $\sigma\left(m^{g}\right)=g^{-1} \sigma(m) g$, for all $g \in G, m \in M$,
(iii) $m^{\prime \sigma(m)}=m^{-1} m^{\prime} m$, for all $m, m^{\prime} \in M$,
(iv) $\operatorname{ker} \sigma \subseteq Z_{c}(M, G)$.

In addition, the relative c-central extension $\sigma: M \rightarrow G$ is said to be a c-cover of (N, G) if there exists a subgroup A of M such that
(i) $A \subseteq Z_{c}(M, G) \cap\left[M{ }_{c} G\right]$,
(ii) $A \cong \mathcal{M}^{(c)}(N, G)$,
(iii) $N \cong M / A$.

In this paper, we prove some inequalities for the order of the c-nilpotent multiplier of a pair of groups.

2. Main Results

Let X and Y be two groups, we recall $X \otimes^{c} Y=X \otimes \underbrace{Y \otimes \ldots \otimes Y}_{c \text {-times }}$ is the abelian tensor product. Also, the exterior product $N \wedge G$ is $N \otimes$ $G /\langle n \otimes n \mid n \in N\rangle$. So $N \wedge^{c} G=N \wedge \underbrace{G \wedge \ldots \wedge G}_{c \text {-times }}$, (see [5] for more information).
Let H be a group and $|H / Z(H)|=p^{n}$, then Wiegold [12] proved that $\left|H^{\prime}\right| \leq p^{1 / 2 n(n+1)}$. If $H / Z(H) \cong G$ then Gaschutz et al. [6] showed that

$$
\left|H^{\prime} \cap Z(H)\right| \leq\left|\mathcal{M}\left(\frac{G}{G^{\prime}}\right)\right|\left|G^{\prime}\right|^{d\left(\frac{G}{Z(G)}\right)-1}
$$

where $d(X)$ is the minimal generator of group X. In particular,

$$
\left|H^{\prime}\right| \leq\left|\mathcal{M}\left(\frac{G}{G^{\prime}}\right)\right|\left|G^{\prime}\right|^{d\left(\frac{G}{Z(G)}\right)-1} .
$$

In [9] Moghaddam et. al. generalized the works of Wiegold and Gaschutz et al. to a pair of groups. In this section, we extend the above results to the c-nilpotent multiplier of a pair of groups. The following Lemmas are useful for the proof of the next results.

Lemma 2.1. Let G and K be two groups with central subgroups N and M, respectively. If $\theta: G \rightarrow K$ is an epimorphism with $\theta(N)=M$, then

$$
\left|\mathcal{M}^{(c)}(M, K)\right| \leq\left|\mathcal{M}^{(c)}(N, G)\right| .
$$

Proof. One can check that θ induces the following epimorphism

$$
\begin{aligned}
& \psi: N \otimes^{c} G^{a b} \rightarrow M \otimes^{c} K^{a b} \\
& \psi\left(n \otimes\left(g_{1} G^{\prime}\right) \otimes \cdots \otimes\left(g_{c} G^{\prime}\right)\right)=\theta(n) \otimes\left(\theta\left(g_{1}\right) K^{\prime}\right) \otimes \cdots \otimes\left(\theta\left(g_{c}\right) K^{\prime}\right),
\end{aligned}
$$

where, $n \in N$ and $g_{1}, \ldots, g_{c} \in G$. Thus, we can see that there exists an epimorphism from $\mathcal{M}^{(c)}(N, G)$ on to $\mathcal{M}^{(c)}(M, K)$. Hence,

$$
\left|\mathcal{M}^{(c)}(M, K)\right| \leq\left|\mathcal{M}^{(c)}(N, G)\right| .
$$

Lemma 2.2. Let (N, G) be a pair of finite groups and M be a normal subgroup of G such that $M \subseteq Z(N, G)$. Then

$$
|M \cap[N, c G]| \leq\left|\mathcal{M}^{(c)}\left(\frac{N}{M}, \frac{G}{M}\right)\right| .
$$

Proof. Define

$$
\begin{aligned}
& \sigma: N \wedge^{c} G \rightarrow G \\
& \sigma\left(n \wedge\left(g_{1} \wedge \cdots \wedge g_{c}\right)\right)=\left[n, g_{1}, \cdots, g_{c}\right] .
\end{aligned}
$$

Thus,

$$
\operatorname{Im}(\sigma)=\left[N,{ }_{c} G\right] \quad \text { and } \quad \operatorname{ker}(\sigma) \cong \mathcal{M}^{(c)}(N, G)
$$

So, there exists an epimprphism

$$
\begin{aligned}
& \varphi: N \wedge^{c} G \rightarrow \frac{N}{M} \wedge^{c} \frac{G}{M} \\
& \varphi\left(n \wedge\left(g_{1} \wedge \cdots \wedge g_{c}\right)\right)=\left(n M^{\prime}\right) \wedge\left(g_{1} M^{\prime} \wedge \cdots \wedge g_{c} M^{\prime}\right),
\end{aligned}
$$

for $g_{1}, \ldots, g_{c} \in G$ and $n \in N$. Thus, we have an epimorphism $\delta:$ $N / M \wedge^{c} G / M \rightarrow\left[N,{ }_{c} G\right]$ such that $\delta \varphi=\sigma$. Therefore,

$$
\left|\left[N,{ }_{c} G\right]\right| \leq\left|\frac{N}{M} \wedge^{c} \frac{G}{M}\right|,
$$

and so, we have

$$
\left|\frac{N}{M} \wedge^{c} \frac{G}{M}\right|\left|M \cap\left[N,_{c} G\right]\right|=\left|\mathcal{M}^{(c)}\left(\frac{N}{M}, \frac{G}{M}\right)\right|\left|\left[N,_{c} G\right]\right| .
$$

Thus, the proof is completes.
Theorem 2.3. Let (M, K) be a pair of finite p-groups. If (N, G) is a pair of finite groups such that $\frac{G}{Z_{c}(N, G)} \cong K$ and $\frac{N}{Z_{c}(N, G)} \cong M$. Then

$$
\left|\left[N,{ }_{c} G\right]\right| \leq\left|\mathcal{M}^{(c)}\left(\frac{M}{[M, c K]}, \frac{K}{[M, c}\right)\right| \cdot|[M, c K]|^{d\left(\frac{K}{Z_{c}(M, K)}\right)},
$$

where $d(X)$ is the minimal number of generators of a group X.

Proof. we prove the result by using induction on the order of $[M, c K]$. If $\left|\left[M,{ }_{c} K\right]\right|=1$, then by using Lemma 2.2, we obtain the result. Now, let $\left|\left[M,{ }_{c} K\right]\right|=n>1$ and the result holds for any pair (M^{\prime}, K^{\prime}) of finite p-groups with $\left|\left[M^{\prime}{ }_{c} K^{\prime}\right]\right|<n$. Let $Z_{c+1}(N, G)$ be the pre-image in the normal subgroup N of $Z\left(\frac{N}{Z_{c}(N, G)}, \frac{G}{Z_{c}(N, G)}\right)$. We have

$$
Z_{c}(N, G) \varsubsetneqq Z_{c+1}(N, G) \cap\left(\left[N,{ }_{c} G\right] Z_{c}(N, G)\right),
$$

thus there exists $x \in\left(Z_{c+1}(N, G) \cap\left(\left[N,_{c} G\right] Z_{c}(N, G)\right)-Z_{c}(N, G)\right.$.
Hence, the following mapping is a well defined epimorphism

$$
\begin{aligned}
& \delta: \frac{G}{Z_{c+1}(N, G)} \rightarrow\left[x,{ }_{c} G\right] \\
& \delta\left(g Z_{c+1}(N, G)\right)=[x, \underbrace{g, \cdots, g}_{c \text {-times }}] .
\end{aligned}
$$

Put $T=\left[x,{ }_{c} G\right]$. So, we obtain $|T| \leq p^{d\left(\frac{K}{Z_{c}(M, K)}\right)}$. Put

$$
\left(N^{*}, G^{*}\right)=\left(\frac{N}{T}, \frac{G}{T}\right) \text { and }\left(M^{*}, K^{*}\right)=\left(\frac{N^{*}}{Z_{c}\left(N^{*}, G^{*}\right)}, \frac{G^{*}}{Z_{c}\left(N^{*}, G^{*}\right)}\right) .
$$

As $x T \in Z_{c}\left(N^{*}, G^{*}\right)-\frac{Z_{c}(N, G)}{T}$. Thus,

$$
\frac{Z_{c}(N, G)}{T} \nsupseteq Z_{c}\left(N^{*}, G^{*}\right) .
$$

Also, the following map is an epimorphism with $\theta(M)=M^{*}$ and $\operatorname{ker} \theta \neq$ 1

$$
\begin{aligned}
& \theta: K \cong \frac{G}{Z_{c}(N, G)} \rightarrow K^{*} \\
& \theta\left(g Z_{c}(N, G)\right)=(g T) Z_{c}\left(N^{*}, G^{*}\right)
\end{aligned}
$$

Now, by Lemma 2.1 we have

$$
\left|\mathcal{M}^{(c)}\left(\frac{M^{*}}{Z_{c}\left(M^{*}, K^{*}\right)}, \frac{K^{*}}{Z_{c}\left(M^{*}, K^{*}\right)}\right)\right| \leq\left|\mathcal{M}^{(c)}\left(\frac{M}{Z_{c}(M, K)}, \frac{K}{Z_{c}(M, K)}\right)\right|
$$

Also,

$$
d\left(\frac{K^{*}}{Z_{c}\left(M^{*}, K^{*}\right)}\right) \leq d\left(\frac{K}{Z_{c}(M, K)}\right) \text { and }\left|\left[M^{*}{ }_{, c} K^{*}\right]\right| \leq\left|\left[M,{ }_{c} K\right]\right|
$$

Hence, we have

$$
\begin{aligned}
\left|\left[N^{*},{ }_{c} G^{*}\right]\right| & \leq\left|\mathcal{M}^{(c)}\left(\frac{M^{*}}{Z_{c}\left(M^{*}, K^{*}\right)}, \frac{K^{*}}{Z_{c}\left(M^{*}, K^{*}\right)}\right)\right| \cdot\left|\left[M^{*},{ }_{c} K^{*}\right]\right|^{d}\left(\frac{K^{*}}{Z_{c}\left(M^{*}, K^{*}\right)}\right) \\
& \leq\left|\mathcal{M}^{(c)}\left(\frac{M}{Z_{c}(M, K)}, \frac{K}{Z_{c}(M, K)}\right)\right|^{\left[M,{ }_{c} K\right]} \\
p & \left.\right|^{d}\left(\frac{K}{Z_{c}(M, K)}\right)
\end{aligned}
$$

On the other hand,

$$
\left|\left[N,{ }_{c} G\right]\right|=\left|\left[N^{*}{ }_{,} G^{*}\right]\right||T|
$$

So, we have

$$
\begin{aligned}
\left|\left[N,_{c} G\right]\right| & \leq\left|\mathcal{M}^{(c)}\left(\frac{M}{Z_{c}(M, K)}, \frac{K}{Z_{c}(M, K)}\right)\right|\left|\frac{\left[M,{ }_{c} K\right]}{p}\right|^{d}\left(\frac{K}{Z_{c}(M, K)}\right) \\
& \leq|T| \\
& \left|\mathcal{M}^{(c)}\left(\frac{M}{Z_{c}(M, K)}, \frac{K}{Z_{c}(M, K)}\right)\right|\left|\left[M,{ }_{c} K\right]\right|^{d\left(\frac{K}{Z_{c}(M, K)}\right)} .
\end{aligned}
$$

The following corollary is an immediate consequence of Theorem 2.3.
Corollary 2.4. Let (M, K) be a pair of finite p-groups. Then for each pair (N, G) of finite groups with $\frac{G}{Z_{c}(N, G)} \cong K$ and $\frac{N}{Z_{c}(N, G)} \cong M$,

$$
\left|\left[N,{ }_{c} G\right] \cap Z_{c}(N, G)\right| \leq\left|\mathcal{M}^{(c)}\left(\frac{M}{\left[M,{ }_{c} K\right]}, \frac{K}{\left[M,{ }_{c} K\right]}\right)\right| \cdot\left|\left[M,{ }_{c} K\right]\right|^{d}\left(\frac{K}{Z_{c}(M, K)}\right)-1 .
$$

Now by Lemma 2.1 and Corollary 2.4 we prove the last result.
Corollary 2.5. Let (N, G) be a pair of finite p-groups such that N has a complement in G. Then

$$
\left|\mathcal{M}^{(c)}(N, G)\right| \leq\left|\mathcal{M}^{(c)}\left(\frac{N}{\left[N,{ }_{c} G\right]}, \frac{G}{\left[N,{ }_{c} G\right]}\right)\right|\left|\left[N,_{c} G\right]\right|^{d\left(\frac{G}{Z_{c}(N, G)}\right)-1} .
$$

Proof. If $\sigma: M \rightarrow G$ is a c-cover of the pair (N, G), then there exists a group H such that $M \subseteq H$, and

$$
\mathcal{M}^{(c)}(N, G) \cong \operatorname{ker} \sigma \subseteq\left[M_{, c} H\right] \cap Z_{c}(M, H) .
$$

And,

$$
(N, G) \cong\left(\frac{M}{\operatorname{ker} \sigma}, \frac{H}{\operatorname{ker} \sigma}\right)
$$

Put

$$
(P, K)=\left(\frac{M}{\left[M,_{c} H\right] \cap Z_{c}(M, H)}, \frac{H}{\left[M,_{c} H\right] \cap Z_{c}(M, H)}\right) .
$$

Thus, by Lemma 2.1 and Corollary 2.4 we obtain

$$
\begin{aligned}
&\left|\mathcal{M}^{(c)}(N, G)\right| \leq\left|\left[M,{ }_{c} H\right] \cap Z_{c}(M, H)\right| \\
& \leq \left\lvert\, \mathcal{M}^{(c)}\left(\frac{P}{[P, c} K\right]\right. \\
&\left.\frac{K}{\left[P,{ }_{c} K\right]}\right)\left|\left|\left[P,{ }_{c} K\right]\right|^{d\left(\frac{K}{z_{c}(P, K)}\right)-1}\right. \\
& \leq\left|\mathcal{M}^{(c)}\left(\frac{N}{\left[N,{ }_{c} G\right]}, \frac{G}{\left[N,{ }_{c} G\right]}\right)\right|\left|\left[N,_{c} G\right]\right|^{d\left(\frac{G}{z_{c}(N, G)}\right)-1} .
\end{aligned}
$$

In the following, we present some examples which satisfy in our results.

Example 2.6. Suppose that D and Q denote the dihedral and the quaternion group of order 8 , also E_{1} and E_{2} denote the extra special p-groups of order p^{3} of odd exponent p and p^{2}, respectively. Also, E_{4} denotes the unique central product of a cyclic group of order p^{2} and a non-abelian group of order p^{3}, and $Z_{n}^{(m)}$ denotes the direct product of m copies of Z_{n}. Then the following groups satisfy in our results;
(i) $G \cong N \times K$ where $N \cong Z_{p^{2}}$ and $K=1$.
(ii) $G \cong N \times K$ where $N \cong E_{4}$ and $K=Z_{p}$.
(iii) $G \cong N \times K$ where $N \cong E_{1} \times Z_{p}^{(3)}$ and $K=Z_{p}$.
(iv) $G \cong N \times K$ where $N \cong Q$ and $K=Z_{p}^{(2)}$.
(v) $G \cong N \times K$ where $N \cong D \times Z_{2}$ and $K=Z_{p}^{(2)}$.
(vi) $G \cong N \times K$ where $N \cong E_{2}$ and $K=Z_{p}^{(2)}$
(vii) $G \cong N \times K$ where $N \cong D \times Z_{2}$ and $K=Z_{p}^{(2)}$

References

[1] H. Arabyani, Bounds for the dimension of Lie algebras, J. Math. Ext. 13 (4) (2019), 231-239.
[2] H. Arabyani, M. J. Sadeghifard and S. Sheikh-Mohseni, Some upper bounds for the dimension of the c-nilpotent multiplier of a pair of Lie algebras, Math. Gen. Algebra Appl. 40 (2020), 159-164.
[3] R. Bear, Representation of groups as quotient groups, I, II and III, Trans Amer. Math. Soc. 58 (1945), 295-419.
[4] G. Ellis, The Schur multiplier of a pair of groups, Appl. Categ. Structures, 6 (3) (1998), 355-371.
[5] G. Ellis and A. McDermott, Tensor products of prime-power groups, J. Pure Appl. Algebra, 132 (2) (1998), 119-128.
[6] W. Gaschutz and J. Ti. Y. Neubüser, Über den multiplikator von pgruppen, Math. Z. 100 (1967), 93-96.
[7] A. Hokmabadi, F. Mohammadzadeh and B. Mashayekhy, On Nilpotent multipliers of pairs of groups and their nilpotent covering pairs, Arxiv:1511.08139vlmath. GR.
[8] G. Karpilovsky, The Schur Multiplier, Clarendon Press, Oxford, 1987.
[9] M. R. R. Moghaddam, A. R. Salemkar and T. Karimi, Some Inequalities for the order of the Schur Multiplier of a Pair of Groups, Comm. Algebra, 36 (2008), 2481-2486.
[10] M. R. R. Moghaddam, A. R. Salemkar and H. M. Sanny, Some inequalities for the Baer-invariant of a pair of finite groups, Indag. Math. 18 (2007), 73-82.
[11] A. R. Salemkar and S. Alizadeh Niri, Bounds for the dimension of the Schur multiplier of a pair of nilpotent Lie algebras, Asian-EurJ. Math. 5(4) (2012), (9 pages).
[12] J. Wiegold, Multiplicators and groups with finite central factor-groups, Math. Z. 89 (1965), 345-347.

[^0]: $1_{\text {arabyani.h@gmail.com, h.arabyani@iau-neyshabur.ac.ir }}$
 Received: 07 February 2021
 Revised: 16 February 2021
 Accepted: 18 February 2021

