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Abstract. In this paper, we consider a generalization of α-ϕ-
Geraghty contractive type operators and investigate the conditions
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1. Introduction

In 1922, Banach [4] presented a very famous fixed point result, namely
Banach contraction principle. This result plays a fundamental role and
brought a great revolution and applications in the field of fixed point the-
ory. Afterwards, several generalizations and improvements of this result
have been obtained among which include quasi-contraction operators
[1, 7, 13]. Interesting results have also been investigated in other spaces
of study aside metric spaces [14, 17, 18, 19, 20, 21, 22, 26, 27]. Uniform
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space is known to generalize the metric and pseudometric spaces. Weil
[28] was the first to characterise uniform spaces in terms of a family
of pseudometrics and Bourbaki [5] provided the definition of a uniform
structure in terms of entourages. Aamri and El Moutawakil [1] gave
some results on common fixed point for some contractive and expansive
operators in uniform spaces and provided the definition of A-distance
and E-distance. Olisama et al. [15] introduced the concept of JAV -
distance (an analogue of b-metric), ϕp-proximal contraction, and ϕp-
proximal cyclic contraction for non-self operators in Hausdorff uniform
spaces and investigated the existence and uniqueness of best proximity
points for these modified contractive operators.
In another development, Geraghty [8] introduced the generalized con-
traction self-operator in metric spaces using comparison functions. In
2013, Cho et al. [6] defined the concept of α-Geraghty contraction type
operators in the setting of a metric space while Karapinar [9, 10] intro-
duced the notion of α-ϕ-Geraghty contractive operators and proved the
existence and uniqueness of a fixed point of such operators in the context
of a complete metric space. For other results on Geraghty contractions
see [3, 6, 8, 9, 10, 11, 12, 16, 25, 26, 27, 29].
Motivated by the results above, we extend the concept of α-ϕ-Geraghty
contractive type operator in metric spaces to Hausdorff uniform spaces
and obtain the unique fixed point for the contractive type operators us-
ing a E-distance function.
The following definitions are fundamental to our work.

Definition 1.1. [5] A uniform space (X,Γ) is a nonempty setX equipped
with a uniform structure which is a family Γ of subsets of Cartesian
product X ×X which satisfy the following conditions:

(i) If U ∈ Γ, then U contains the diagonal ∆ = {(x, x) : x ∈ X}.
(ii) If U ∈ Γ, then U−1 = {(y, x) : (x, y) ∈ U} is also in Γ.
(iii) If U, V ∈ Γ, then U ∩ V ∈ Γ.
(iv) If U ∈ Γ and V ⊆ X ×X, which contains U, then V ∈ Γ.
(v) If U ∈ Γ, then there exists V ∈ Γ such that whenever (x, y) and

(y, z) are in V , then (x, z) is in U.

Γ is called the uniform structure or uniformity of U and its elements are
called entourages, neighbourhoods, surroundings, or vicinities.

Definition 1.2. [1] Let (X,Γ) be a uniform space. A function p :
X ×X → R+ is said to be a

(a) A-distance if, for any V ∈ Γ, there exists δ > 0 such that if
p(z, x) ≤ δ and p(z, y) ≤ δ for some z ∈ X, then (x, y) ∈ V .

(b) E-distance if p is a A-distance and p(x, z) ≤ p(x, y) + p(y, z),
∀x, y, z ∈ X.
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Definition 1.3. [5] Let (X,Γ) be a uniform space and p a A-distance
on X.

(a) If V ∈ Γ, (x, y) ∈ V , and (y, x) ∈ V , x and y are said to be
V -close. A sequence {xn} is a Cauchy sequence for Γ if for any
V ∈ Γ, there exists N ≥ 1 such that xn and xm are V -close for
n,m ≥ N . The sequence {xn} ∈ X is a p-Cauchy sequence if for
every ϵ > 0 there exists N ∈ N such that p(xn, xm) < ϵ for all
n,m ≥ N .

(b) X is S-complete if for any p-Cauchy sequence {xn}, there exists
x ∈ X such that lim

n→∞
p(xn, x) = 0.

(c) f : X → X is p-continuous if
lim
n→∞

p(xn, x) = 0 implies lim
n→∞

p(f(xn), f(x)) = 0.

(d) X is p-bounded if δp(X) = sup{p(x, y) : x, y ∈ X} <∞.

To guarantee the uniqueness of the limit of the Cauchy sequence for Γ,
the uniform space (X,Γ) needs to be Hausdorff.

Definition 1.4. [5] A uniform space (X,Γ) is said to be Hausdorff if
and only if the intersection of all the V ∈ Γ reduces to the diagonal ∆
of X, ∆ = {(x, x), x ∈ X}. In other words, (x, y) ∈ V for all V ∈ Γ
implies x = y.

Popescu [16] introduced the concepts of α-orbital admissible and trian-
gular α-orbital admissible operators as improvements of α -admissible
operator defined in [24] and triangular α-admissible operator defined in
[11] respectively.

Definition 1.5. [16] Let T : X → X and α : X × X → R+ be a
function. Then T is said to be α-orbital admissible if α(x, Tx) ≥ 1
implies α(Tx, T 2x) ≥ 1.

Definition 1.6. [16] Let T : X → X and α : X × X → R+ be a
function. Then T is said to be triangular α-orbital admissible if T is
α-orbital admissible and α(x, y) ≥ 1, α(y, Ty) ≥ 1 imply α(x, Ty) ≥ 1.

Lemma 1.7. [16] Let T : X → X be a triangular α - orbital admissible
operator. Assume that there exists x1 ∈ X such that α(x, Tx) ≥ 1.
Define a sequence {xn} by xn+1 = Txn. Then, we have α(xn, xm) ≥ 1
for all m,n ∈ N with n < m.

Let F be the family of all functions β : [0,∞) → [0, 1) which satisfy the
condition lim

n→∞
β(tn) = 1 implies lim

n→∞
tn = 0.

Let Φ denote the class of the functions ϕ : [0,∞) → [0,∞) which satisfy
the following conditions:

(i) ϕ is non decreasing;
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(ii) ϕ is continuous;
(iii) ϕ(t) = 0 ⇐⇒ t = 0.

2. Main result

Now, we introduce the following concepts in a uniform space.

Definition 2.1. Let (X,Γ) be a S-complete Hausdorff uniform space
such that p is a E-distance on X and let α : X × X → R+ be a func-
tion. A self operator T : X → X is called a generalized α-ϕ-Geraghty
contractive type operator if there exists β ∈ F such that for all x, y ∈ X,

α(x, y)ϕ(p(Tx, Ty)) ≤ β(ϕ(MT (x, y)))ϕ(MT (x, y)), (2.1)

where MT (x, y) = max
{
p(x, y), p(x, Tx), p(y, Ty), p(x,Ty)+p(y,Tx)

2

}
.

If MT (x, y) = p(x, y), inequality (2.1) reduces to the following.

Definition 2.2. Let (X,Γ) be a S-complete Hausdorff uniform space
such that p is a E-distance on X and let α : X×X → R+ be a function.
A self operator T : X → X is called an α-ϕ-Geraghty contractive type
operator if there exists β ∈ F such that for all x, y ∈ X,

α(x, y)ϕ(p(Tx, Ty)) ≤ β(ϕ(p(x, y)))ϕ(p(x, y)), (2.2)

where ϕ ∈ Φ.

Example 2.3. Let X = [0,+∞) and T : X → X an operator such that
p is a E-distance. Suppose T is defined by

T (x) =

{
1
2x, if x ∈ [0, 2]
1, otherwise.

Consider the function p and ϕ defined: p(x, y) = y, ϕ(t) = t
2 . We see

that p is a E-distance, X is S-complete and T is p-continuous. Taking
β : [0,∞) → [0, 1) defined by β = 1

1+t , T is a generalized α-ϕ-Geraghty
contractive type operator.

Theorem 2.4. Let (X,Γ) be a S-complete Hausdorff uniform space such
that p is a E-distance on X and let α : X × X → R+ be a function.
Suppose the following conditions are satisfied:

(i) T is a generalized α-ϕ-Geraghty contractive type operator;
(ii) T is triangular α-orbital admissible operator;
(iii) there exists x1 ∈ X such that α(x1, Tx1) ≥ 1;
(iv) T is continuous.

Then T has a fixed point x∗ ∈ X and {Tnx1} converges to x∗.
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Proof. Let x1 ∈ X such that α(x1, Tx1) ≥ 1. Define a sequence {xn}
by xn+1 = Txn for n ≥ 1. If xn0 = xn0+1 for some 1 ≤ i ≤ n − 1, then
obviously T has a fixed point. Thus, we suppose that xn ̸= xn+1 for all
n ≥ 1. By Lemma 1.7, we have

α(xn, xn+1) ≥ 1 (2.3)

for all n ≥ 1. By (2.1) we get,

ϕ(p(xn+1, xn+2)) = ϕ(p(Txn, Txn+1))

≤ α(xn, xn+1)ϕ(p(Txn, Txn+1))

≤ β(ϕ(MT (xn, xn+1)))ϕ(MT (xn, xn+1)) (2.4)

where

MT (xn, xn+1) = max{p(xn, xn+1), p(xn, Txn), p(xn+1, Txn+1),
p(xn,Txn+1)+p(xn+1,Txn)

2 }

= max
{
p(xn, xn+1), p(xn+1, xn+2),

p(xn,xn+2

2

}
≤ max{p(xn, xn+1), p(xn+1, xn+2),

p(xn,xn+1)+p(xn+1,xn+2

2 }
= max{p(xn, xn+1), p(xn+1, xn+2)}.

Note that MT (xn, xn+1) = p(xn+1, xn+2) is impossible due to the defi-
nition of β. Indeed,

ϕ(p(xn+1, xn+2)) ≤ β(ϕ(MT (xn, xn+1)))ϕ(MT (xn, xn+1))

≤ β(ϕ(MT (xn+1, xn+2)))ϕ(MT (xn+1, xn+2))

< ϕ(p(xn+1, xn+2))

is a contradiction. Therefore, ϕ(p(xn+1, xn+2)) ≤ ϕ(p(xn, xn+1)) for
all n ∈ N. Thus, the sequence {p(xn, xn+1)} is non-negative and non
increasing. Consequently, there exists r ≥ 0 such that

lim
n→∞

p(xn, xn+1) = r.

We claim that r = 0. Suppose, on the contrary, that r > 0. Then we
have

ϕ(p(xn+1, xn+2))

ϕ(p(xn, xn+1))
≤ β(ϕ(MT (xn, xn+1))) < 1.

Therefore,
lim
n→∞

β(ϕ(MT (xn, xn+1))) = 1.

Since β ∈ F ,

lim
n→∞

ϕ(MT (xn, xn+1)) = 0 (2.5)
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and

r = lim
n→∞

p(xn, xn+1) = 0

which is a contradiction.
Next, to show that {xn} is a p-Cauchy sequence. Suppose, to the con-
trary that {xn} is not p-Cauchy. Then there exists ϵ > 0 such that for
all n ≥ 1, there exist m > n with p(xn, xm) ≥ ϵ. Therefore,

p(xn, xm) ≤ p(xn, xn+1)) + p(xn+1, xm+1) + p(xm+1, xm). (2.6)

Combining (2.3) and (2.6) with the properties of ϕ, we get

ϕ(p(xn, xm)) ≤ ϕ(p(xn, xn+1) + p(Txn, Txm) + p(xm+1, xm))

≤ ϕ(p(xn, xn+1)) + ϕ(p(Txn, Txm)) + ϕ(p(xm+1, xm))

≤ ϕ(p(xn, xn+1)) + ϕ(p(xm+1, xm)) +

β(ϕ(MT (xn, xm)))ϕ(MT (xn, xm)). (2.7)

From (2.7), we deduce that

lim
m,n→∞

ϕ(p(xn, xm)) ≤ lim
m,n→∞

β(ϕ(MT (xn, xm))) lim
m,n→∞

ϕ(MT (xn, xm))

≤ lim
m,n→∞

β(ϕ(MT (xn, xm))) lim
m,n→∞

ϕ(p(xn, xm)).

This implies,

lim
m,n→∞

β(ϕ(MT (xn, xm))) = 1.

Consequently, lim
m,n→∞

MT (xn, xm) = 0, a contradiction. Therefore, {xn}
is a p-Cauchy sequence. Recalling S-completeness of X, we conclude
that there exists x∗ = lim

n→∞
xn ∈ X. By continuity of T , lim

n→∞
Txn = Tx∗

and so x∗ = Tx∗, which means x∗ is a fixed point of T .

The continuity of the operator T can be replaced with an appropriate
condition.

Theorem 2.5. Let (X,Γ) be a S-complete Hausdorff uniform space such
that p is a E-distance on X and let α : X × X → R+ be a function.
Suppose the following conditions are satisfied:

(i) T is a generalized α-ϕ-Geraghty contractive type operator;
(ii) T is triangular α-orbital admissible operator;
(iii) there exists x1 ∈ X such that α(x1, Tx1) ≥ 1;
(iv) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n

and xn → x ∈ X as n → +∞, then there exists a subsequence
{xnk

} of {xn} such that α(xnk
, x) ≥ 1 for all k.

Then T has a fixed point x∗ ∈ X and {Tnx1} converges to x∗.
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Proof. Following the proof of Theorem 2.4, we know that the sequence
{xn} defined by xn+1 = Txn for all n ≥ 0 converges to some x∗ ∈ X.
By condition of (iv), we deduce that there exists a subsequence {xnk

}
of {xn} such that α(xnk

, xn) ≥ 1 for all k. Applying (2.1), for all k, we
get that

α(xnk
, x∗)ϕ(p(xnk+1

, Tx∗)) = α(xnk
, x∗)ϕ(p(Txnk

, Tx∗))

≤ β(ϕ(MT (xnk
, x∗))ϕ(MT (xnk

, x∗)(2.8)

where

MT (xnk
, x∗) = max{p(xnk

, x∗), p(xnk
, Txnk

), p(x∗, Tx∗),
p(xnk

,Tx∗)+p(x∗,Txnk
)

2 }
= max{p(xnk

, x∗), p(xnk
, xnk+1

), p(x∗, Tx∗),

p(xnk
,Tx∗)+p(x∗,xnk+1

)

2 }.

Thus,

lim
k→∞

ϕ(MT (xnk
, x∗) = ϕ(p(x∗, Tx∗)).

From (2.8), we have

α(xnk
, x∗)

ϕ(p(xnk+1
, Tx∗))

ϕ(MT (xnk
, x∗))

≤ β(ϕ(MT (xnk
, x∗))) < 1.

As k → ∞, we conclude that lim
k→∞

β(ϕ(MT (xnk
, x∗))) = 1, and so

lim
k→∞

ϕ(MT (xnk
, x∗)) = ϕ(p(x∗, Tx∗)) = 0. This is a contradiction. There-

fore, Tx∗ = x∗.
For the uniqueness of a fixed point of a generalized α-ϕ-Geraghty con-
tractive type operator, we replace condition (iii) with the following hy-
pothesis called the (H) property.

(H) For all x ̸= y ∈ Fix(T ), there exists w ∈ X such that α(x,w) ≥ 1,
α(y, w) ≥ 1 and α(w, Tw) ≥ 1. Fix(T ) denotes the set of fixed points
of T .

Theorem 2.6. Adding condition (H) to the hypothesis of Theorem 2.4
(respectively Theorem 2.5), we obtain that x∗ is the unique fixed point
of T .

Proof. Due to Theorem 2.4 (respectively Theorem 2.5), we have a fixed
point, say x∗ ∈ X. Assume by contradiction that x∗ and y∗ are two
fixed points of T such that x∗ ̸= y∗. Then by (H), there exists w ∈ X
such that α(x,w) ≥ 1, α(y, w) ≥ 1 and α(w, Tw) ≥ 1. Since T is a
triangular α-orbital admissible operator we get that α(x∗, Tnw) ≥ 1
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and α(y∗, Tnw) ≥ 1 for all n ≥ 1. We then have,

p(x∗, Tn+1w) ≤ α(x∗, Tnw)p(Tx∗, Tn+1w) ≤ β(MT (x
∗, Tnw))MT (x

∗, Tnw)

for all n ≥ 1 where,

MT (x
∗, Tnw) = max{p(x∗, Tnw), p(x∗, Tx∗), p(Tnw, Tn+1w),

p(x∗,Tn+1w)+p(Tx∗,Tnw)
2 }

= max{p(x∗, Tnw), p(Tnw, Tn+1w),
p(x∗,Tn+1w)+p(x∗,Tnw)

2 }.

By Theorem 2.4 and 2.5, we deduce that the sequence Tnw converges
to a fixed point z∗ of T . Let n→ ∞ in the above equation, we get

lim
n→∞

MT (x
∗, Tnw) = p(x∗, z∗).

Suppose x∗ ̸= z∗ then p(x∗,Tn+1w)
MT (x∗,Tnw) ≤ β(MT (x

∗, Tnw)) and as n→ ∞, we

have lim
n→∞

β(MT (x
∗, Tnw)) = 1.

Thus lim
n→∞

MT (x
∗, Tnw) = 0 and p(x∗, z∗) = 0, which is a contradiction.

Therefore x∗ = z∗. Similarly, we have Tnw = y∗ which implies x∗ = y∗,
a contradiction. Hence, the fixed point is unique.

Corollary 2.7. Let (X,Γ) be a S-complete Hausdorff uniform space
such that p is a E-distance on X and let α : X×X → R+ be a function.
Suppose the following conditions are satisfied:

(i) T is an α-ϕ-Geraghty contractive type operator;
(ii) T is triangular α-orbital admissible operator;
(iii) there exists x1 ∈ X such that α(x1, Tx1) ≥ 1;
(iv) T is continuous or if {xn} is a sequence in X such that α(xn, xn+1) ≥

1 for all n and xn → x ∈ X as n → +∞, then there exists a
subsequence {xnk

} of {xn} such that α(xnk
, x) ≥ 1 for all k.

Then T has a fixed point x∗ ∈ X and {Tnx1} converges to x∗.

Proof. It follows from Theorem 2.4 and Theorem 2.5 respectively if
max{MT (x, y)} = p(x, y).

Corollary 2.8. Adding condition (H) to the hypotheses of Corollary
2.7, we obtain that x∗ is the unique fixed point of T.

Corollary 2.9. Let (X,Γ) be a S-complete Hausdorff uniform space
such that p is a E-distance on X and let α : X×X → R+ be a function.
Suppose the following conditions are satisfied:

(i) T is a generalized α-Geraghty contractive type operator;
(ii) T is triangular α-orbital admissible operator;
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(iii) there exists x1 ∈ X such that α(x1, Tx1) ≥ 1;
(iv) T is continuous or if {xn} is a sequence in X such that α(xn, xn+1) ≥

1 for all n and xn → x ∈ X as n → +∞, then there exists a
subsequence {xn(k)} of {xn} such that α(xn(k), x) ≥ 1 for all k.

Then T has a fixed point x∗ ∈ X and {Tnx1} converges to x∗.

Proof. It follows from Theorem 2.4 and Theorem 2.5 if ϕ(t) = t.

Corollary 2.10. Let (X,Γ) be a S-complete Hausdorff uniform space
such that p is a E-distance on X and let α : X×X → R+ be a function.
Suppose the following conditions are satisfied:

(i) T is an α-Geraghty contractive type operator;
(ii) T is triangular α-orbital admissible operator;
(iii) there exists x1 ∈ X such that α(x1, Tx1) ≥ 1;
(iv) T is continuous or if {xn} is a sequence in X such that α(xn, xn+1) ≥

1 for all n and xn → x ∈ X as n → +∞, then there exists a
subsequence {xn(k)} of {xn} such that α(xn(k), x) ≥ 1 for all k.

Then T has a fixed point x∗ ∈ X and {Tnx1} converges to x∗.

Proof. If ϕ(t) = t and max{MT (x, y)} = p(x, y) in Theorem 2.4 and
Theorem 2.5 then the proof follows.

We give an example to illustrate Theorem 2.4.

Example 2.11. Let (X,Γ) be a uniform space such that p is a E-
distance. Consider X = [0,∞+) and a E-distance p defined by

p(x, y) =

 y, if x ≤ y,

1, otherwise.

Suppose β(t) = 1
1+t , ϕ(t) =

t
2 and the operator T : X → X is defined

by T (x) = 1
3x, ∀x ∈ X. We also define a function α : X ×X → R+ in

the following way

α(x, y) =

 1, if (0 ≤ x, y ≤ 3),

0, otherwise.

Condition (iii) of Theorem 2.4 is satisfied with x1 = 1. Condition (iv)
of Theorem 2.4 is satisfied with xn = Tnx1 = 1

3n . Obviously, condition
(ii) is satisfied. Let x, y be such that α(x, y) ≥ 1. Then, x, y ∈ [0, 3] and
Tx, Ty ∈ [0, 3]. Moreover, α(y, Ty) = α(x, Tx) = 1 and α(Tx, T 2x) = 1.
Thus, T is triangular α-orbital admissible and (ii) is satisfied. Finally,
to prove that (i) is satisfied. If 0 ≤ x, y ≤ 3, then α(x, y) = 1 and
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β(ϕ(MT (x, y)))ϕ(MT (x, y))− α(x, y)ϕ(p(Tx, Ty))

= β(ϕ(MT (x, y)))ϕ(MT (x, y))− ϕ(p(Tx, Ty))

=

(
1

1 + y
2

)(y
2

)
−

(
1

3

)(y
2

)
=

y(4− y)

6(2 + y)

≥ 0.

Therefore, α(x, y)ϕ(p(Tx, Ty)) ≤ β(ϕ(p(x, y)))ϕ(p(x, y)) for 0 ≤ x, y ≤
3. If x, y > 3, x ∈ [0, 3], y > 3 or vice versa then, obviously, we have

α(x, y)ϕ(p(Tx, Ty)) ≤ β(ϕ(p(x, y)))ϕ(p(x, y)),

since α(x, y) = 0. Consequently, all assumptions of Theorems 2.4 are
satisfied, and T has a unique fixed point x∗ = 0.

We also notice that Theorem 1.1 in [8] is not satisfied. In fact, for
x = 0, y = 3 and d(x, y) = |x− y|, we have

d(T0, T3) = 1 >
3

4
= β(d(0, 3))d(0, 3).

Conclusion

The fixed point results obtained in a S-complete Hausdorff uniform
space equipped with a E-distance for generalized α-ϕ-Geraghty contrac-
tive type operators, apart from being a generalization and extension of
some related works in the literature, paves way for more investigations
to unravel conditions for the existence and uniqueness of fixed points in
other abstract spaces.
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