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Abstract.

Let B be a Banach A− bimodule. We introduce the weak topo-
logical centers of left module action and we show it by Z̃ℓ

B∗∗(A∗∗).

For a compact group, we show that L1(G) = Z̃ℓ
M(G)∗∗(L

1(G)∗∗)

and on the other hand we have Z̃ℓ
1(c

∗∗
0 ) ̸= c∗∗0 . Thus the weak topo-

logical centers are different with topological centers of left or right
module actions. In this manuscript, we investigate the relationships
between two concepts with some conclusions in Banach algebras.
We also have some application of this new concept and topological
centers of module actions in the cohomological properties of Banach
algebras, spacial, in the weak amenability and n-weak amenability
of Banach algebras.
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1. Introduction

Let B be a Banach A − bimodule. A derivation from A into B is a
bounded linear mapping D : A → B such that

D(xy) = xD(y) +D(x)y for all x, y ∈ A.

The space of continuous derivations fromA intoB is denoted by Z1(A,B).
Easy example of derivations are the inner derivations, which are given
for each b ∈ B by

δb(a) = ab− ba for all a ∈ A.

The space of inner derivations from A into B is denoted by N1(A,B).
The Banach algebra A is said to be a amenable, when for every Banach
A−bimodule B, the inner derivations are only derivations existing from
A into B∗. It is clear that A is amenable if and only if H1(A,B∗) =
Z1(A,B∗)/N1(A,B∗) = {0}. The concept of amenability for a Banach
algebra A, introduced by Johnson in 1972, has proved to be of enormous
importance problems in Banach algebra theory, see [14]. For Banach A−
bimodule, B, the quotient space H1(A,B) is called the first cohomology
group of A with coefficients in B.
Let X,Y, Z be normed spaces and m : X×Y → Z be a bounded bilinear
mapping. Arens in [1] offers two natural extensions m∗∗∗ and mt∗∗∗t of
m from X∗∗ × Y ∗∗ into Z∗∗ that he called m is Arens regular whenever
m∗∗∗ = mt∗∗∗t, for more information see [1, 12, 19].

Recently, the subject of regularity of bounded bilinear mappings and
Banach module actions have been investigated in [6, 9, 12, 13]. In [8],
Eshaghi Gordji and Fillali gave several significant results related to the
topological centers of Banach module actions. In [19], the authors have
obtained a criterion for the regularity of f , from which they gave several
results related to the regularity of Banach module actions with some
applications to the second adjoint of a derivation. For a good and rich
source of information on this subject, we refer the reader to the Memoire
in [7]. We also shall mostly follow [4] as a general reference on Banach
algebras.

Regarding A as a Banach A − bimodule, the operation π : A × A →
A extends to π∗∗∗ and πt∗∗∗t defined on A∗∗ × A∗∗. These extensions
are known, respectively, as the first (left) and the second (right) Arens
products, and with each of them, the second dual space A∗∗ becomes
a Banach algebra. The regularity of a normed algebra A is defined
to be the regularity of its algebra multiplication when considered as
a bilinear mapping. Suppose that A is a Banach algebra and B is a
Banach A − bimodule. Since B∗∗ is a Banach A∗∗ − bimodule, where
A∗∗ is equipped with the first Arens product, we define the topological
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center of the right module action of A∗∗ on B∗∗ as follows:

Zℓ
A∗∗(B∗∗) = Z(πr) = {b′′ ∈ B∗∗ : the map a′′ → π∗∗∗

r (b′′, a′′) : A∗∗ → B∗∗

is weak∗ − weak∗ continuous}.
In this way, we write Zℓ

B∗∗(A∗∗) = Z(πℓ), Zr
A∗∗(B∗∗) = Z(πt

ℓ) and
Zr
B∗∗(A∗∗) = Z(πt

r), where πℓ : A × B → B and πr : B × A → B
are the left and right module actions of A on B, for more information,
see [6, 9].

If we set B = A, we write Zℓ
A∗∗(A∗∗) = Z1(A

∗∗) = Zℓ
1(A

∗∗) and
Zr
A∗∗(A∗∗) = Z2(A

∗∗) = Zr
2(A

∗∗), for more information see [17]. Let B

be a Banach A−bimodule and n ≥ 0. Suppose that B(n) is an n−th dual
of B. Then B(n) is also Banach A− bimodule, that is, for every a ∈ A,
b(n) ∈ B(n) and b(n−1) ∈ B(n−1), we define

⟨b(n)a, b(n−1)⟩ = ⟨b(n), ab(n−1)⟩,

⟨ab(n), b(n−1)⟩ = ⟨b(n), b(n−1)a⟩.
Let A(n) and B(n) be n − th dual of A and B, respectively. By [23],

for an even number n ≥ 0, B(n) is a Banach A(n) − bimodule. Then
for n ≥ 2, we define B(n)B(n−1) as a subspace of A(n−1), that is, for all
b(n) ∈ B(n), b(n−1) ∈ B(n−1) and a(n−2) ∈ A(n−2) we define

⟨b(n)b(n−1), a(n−2)⟩ = ⟨b(n), b(n−1)a(n−2)⟩.

If n is odd number, then for n ≥ 1, we define B(n)B(n−1) as a subspace
of A(n), that is, for all b(n) ∈ B(n), b(n−1) ∈ B(n−1) and a(n−1) ∈ A(n−1)

we define

⟨b(n)b(n−1), a(n−1)⟩ = ⟨b(n), b(n−1)a(n−1)⟩.
and if n = 0, we take A(0) = A and B(0) = B.
So we can define the topological centers of module actions of A(n) on
B(n) similarly.

2. Weak topological center of module actions

In this section, we introduce a new concept as weak topological center
of Banach algebras, module actions and we study their relationship with
topological centers of module actions with some conclusions in the group
algebras.

Definition 2.1. Let B be a Banach A− bimodule. We define the weak
topological centers of left module action as follows:

Z̃ℓ
B∗∗(A∗∗) = {a′′ ∈ A∗∗ : the maping b′′ → a′′b′′ is weak∗−weak continuous },

Z̃ℓ
A∗∗(B∗∗) = {b′′ ∈ B∗∗ : the maping a′′ → b′′a′′ is weak∗−weak continuous }.
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Definition of Z̃r
B∗∗(A∗∗) and Z̃r

A∗∗(B∗∗) are similar for right module

action. If B = A, we write Z̃ℓ
A∗∗(A∗∗) = Z̃ℓ

1(A
∗∗) and Z̃r

A∗∗(A∗∗) =

Z̃r
1(A

∗∗), and the spaces Z̃ℓ
2(A

∗∗) and Z̃r
2(A

∗∗) have similar definitions

with respect to the second Arens product. It is clear that Z̃ℓ
i (A

∗∗) and

Z̃r
i (A

∗∗) for each i ∈ {1, 2}, are subspaces of A∗∗ with respect to the both
Arens products. In general, by easy calculations, we have the following
results:

(1) If Z̃ℓ
1(A

∗∗) = A∗∗ or Z̃r
1(A

∗∗) = A∗∗, then A is Arens regular.

(2) Let B ⊆ A∗∗. Then BZ̃ℓ
1(A

∗∗) ⊆ Z̃ℓ
1(A

∗∗) and Z̃r
1(A

∗∗)B ⊆
Z̃r
1(A

∗∗).

(3) If Z̃ℓ
1(A

∗∗) = A, then A is a right ideal in A∗∗.

(4) If Z̃r
1(A

∗∗) = A, then A is a left ideal in A∗∗.

(5) If Z̃ℓ
1(A

∗∗) = Zr
1(A

∗∗) = A, then A is an ideal in A∗∗.

(6) If A∗∗∗A∗∗ ⊆ A∗, then Z̃ℓ
1(A

∗∗) = Z1(A
∗∗) = A∗∗.

(7) If A∗∗A∗∗∗ ⊆ A∗, then Z̃r
1(A

∗∗) = A∗∗.
(8) Suppose that A∗∗∗A ⊆ A∗. If A is left strongly Arens irregular,

then
Z̃ℓ
1(A

∗∗) = A

In the following example, we show that if a Banach algebra A is Arens
regular or strongly Arens irregular on the left, in general, Z̃ℓ

1(A
∗∗) is not

A∗∗ or A, respectively.

Example 2.2. (1) Let A be nonreflexive Arens regular Banach al-
gebra and e′′ ∈ A∗∗ be a left unite element of A∗∗. Then
Z̃ℓ
1(A

∗∗) ̸= A∗∗. Since c∗∗0 = ℓ∞ and Arens product in c∗∗0 co-
incide with the given natural product in ℓ∞, c∗∗0 is unital. Thus

Z̃ℓ
1(c

∗∗
0 ) ̸= c∗∗0

(2) Suppose that G is a locally compact group. Then by notice to
[21], we know that in spacial case, M(G) is left strong Arens

irregular, but Z̃ℓ
1(M(G)∗∗) ̸= M(G)∗∗.

(3) By ([4], Example 3.6.22(i)), we know that c0 is Arens regular,

and so Z1(c
∗∗
0 ) = c∗∗0 , but we claim that Z̃ℓ

1(c
∗∗
0 ) = c0. Indeed

c∗∗0 = ℓ∞ with the point-wise product. We can identity ℓ∞ with
C(βN) the continuous functions on the Stone-Cech compacti-
fication, and then we find that (ℓ∞)∗ = M(βN) the measure
space, and so the weak topology center is those f ∈ C(βN)
with fµ ∈ ℓ1 for all µ ∈ M(βN). By considering point masses
in M(βN) (ultra-filter limits along N), it is easy to show that
f ∈ c0.

Definition 2.3. Let A be a Banach algebra. The subspace of A∗∗∗

annihilating A will be denoted by A⊥ = {a′′′ ∈ A∗∗∗ : a′′′ |A= 0}.
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Theorem 2.4. Let A be a Banach algebra. Then we have the following
assertions.

(1) If A is a left ideal in A∗∗, then A ⊆ Z̃ℓ
1(A

∗∗) ∩ Z̃ℓ
2(A

∗∗).

(2) If A is a right ideal in A∗∗, then A ⊆ Z̃r
1(A

∗∗) ∩ Z̃r
2(A

∗∗).

(3) If A is an ideal in A∗∗, then A ⊆ Z̃ℓ
1(A

∗∗)∩ Z̃ℓ
2(A

∗∗)∩ Z̃r
1(A

∗∗)∩
Z̃r
2(A

∗∗).
(4) If A is a left (resp. right) ideal in A∗∗ and A∗∗ has a left (resp.

right) unit in Z̃ℓ
1(A

∗∗) (resp. Z̃r
1(A

∗∗)), then A is reflexive.

Proof. (1) Assume that (a′′α)α ⊆ A∗∗ and a′′α
w∗
→ a′′. Let a′′′ ∈ A∗∗∗.

Since A∗∗∗ = A∗ ⊕ A⊥, there are a′ ∈ A∗ and t ∈ A⊥ such that
a′′′ = (a′, t). Then for every a ∈ A, we have

⟨a′′′, aa′′α⟩ = ⟨(a′, t), aa′′α⟩ = ⟨aa′′α, a′⟩

→ ⟨aa′′, a′⟩ = ⟨a′′′, aa′′⟩.
It follows that A ⊆ Z̃ℓ

1(A
∗∗). Since for every a ∈ A and a′′ ∈ A∗∗,

we have aa′′ = aoa′′, similarly it follows that A ⊆ Z̃ℓ
2(A

∗∗). Thus
the result holds.

(2) The proof similar to (1).
(3) Obvious.

(4) Let e ∈ Z̃ℓ
1(A

∗∗) be an unit element for A∗∗. Set a′′′ ∈ A∗∗∗ and

(a′′α)α ⊆ A∗∗ such that a′′α
w∗
→ a′′. Since A∗∗∗ = A∗ ⊕ A⊥, there

are a′ ∈ A∗ and t ∈ A⊥ such that a′′′ = (a′, t). Thus

⟨a′′′, a′′α⟩ = ⟨a′′′, ea′′α⟩ = ⟨(a′, t), ea′′α⟩ = ⟨ea′′α, a′⟩

→ ⟨ea′′, a′⟩ = ⟨a′′′, a′′⟩.

It follows that a′′α
w→ a′′. Hence A is reflexive.

�

Corollary 2.5. Let A be a Banach algebra. Then we have the following
assertions.

(1) If A is a left ideal in A∗∗ and left strongly Arens irregular, then

Z̃ℓ
1(A

∗∗) = A, and so A is an ideal in A∗∗.
(2) If A is a right ideal in A∗∗ and right strongly Arens irregular,

then Z̃r
1(A

∗∗) = A, and so A is an ideal in A∗∗.

(3) If A is an ideal in A∗∗ and strongly Arens irregular, then Z̃ℓ
1(A

∗∗) =

Z̃r
1(A

∗∗) = A.
(4) If A is a left (resp. right) ideal in A∗∗ and A∗∗ has a left (resp.

right) unit in Z̃ℓ
1(A

∗∗) (resp. Z̃r
1(A

∗∗)), then A is reflexive.

Proof. By using Theorem 2.4, the proof holds. �
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Example 2.6. (1) Let G be a compact group. By using [16], we
know that L1(G) is a strongly Arens irregular and L1(G) is an
ideal in its second dual. Then by using the preceding corollary,
we have L1(G) = Z̃ℓ

1(L
1(G)∗∗) = Z̃r

1(L
1(G)∗∗).

(2) Let G be a locally compact group. Then, in general, by the
preceding corollary, M(G) is not a left or right ideal in its second
dual.

Theorem 2.7. Let B be a Banach A− bimodule. Then for every even
number n ≥ 2, we have the following assertions.

(1) Zℓ
A(n)(B

(n+1)) = B(n+1) if and only if Z̃r
A(n)(B

(n)) = B(n).

(2) Zℓ
A(n)(A

(n+1)) = A(n+1) if and only if Z̃r
1(A

(n)) = A(n).

(3) Zr
A(n)(A

(n+1)) = A(n+1) if and only if Z̃ℓ
1(A

(n)) = A(n).

(4) Zr
B(n)(A

(n+1)) = A(n+1) if and only if Z̃ℓ
A(n)(B

(n)) = B(n).

Proof. 1) Suppose that Zℓ
A(n)(B(n+1)) = B(n+1) and b(n) ∈ B(n). We

show that the mapping a(n) → a(n)b(n) is weak∗ − weak continuous.

Assume that (a
(n)
α )α ⊆ A(n) such that a

(n)
α

w∗
→ a(n). Then for all b(n+1) ∈

B(n+1), we have b(n+1)a
(n)
α

w∗
→ b(n+1)a(n). It follows that

⟨b(n+1), a(n)α b(n)⟩ = ⟨b(n+1)a(n)α , b(n)⟩

→ ⟨b(n+1)a(n), b(n)⟩

= ⟨b(n+1), a(n)b(n)⟩.

Thus we conclude that b(n) ∈ Z̃r
A(n)(B

(n)).
The converse is the same.
Proofs of (2), (3) and (4) similar to (1). �
Example 2.8. Let A be a non-reflexive Banach space and let ⟨f, x⟩ = 1
and ∥f∥ ≤ 1 for some f ∈ A∗ and x ∈ A. We define the product on A
by ab = ⟨f, b⟩a. It is clear that A is a Banach algebra with this product
and it has right identity x. By easy calculation, for all a′ ∈ A∗, a′′ ∈ A∗∗

and a′′′ ∈ A∗∗∗, we have

a′a = ⟨a′, a⟩f,
a′′a′ = ⟨a′′, f⟩a′,
a′′′a′′ = ⟨a′′, a′′⟩⟨., f⟩.

Therefore we have Zℓ
A∗∗(A∗∗∗) ̸= A∗∗∗. So by Theorem 2.7, we have

Z̃r
A∗∗(A∗∗) ̸= A∗∗.

Similarly, if we define the product on A as ab = ⟨f, a⟩b for all a, b ∈ A,
then we have Zℓ

A∗∗(A∗∗∗) = A∗∗∗. By using Theorem 2.7, it follows that

Z̃r
A∗∗(A∗∗) = A∗∗.
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Theorem 2.9. Let n > 0 be an even number and let B be a left
(resp. right) Banach A−module such that A(n−2)B(n) ⊆ B(n−2) (resp.

B(n)A(n−2) ⊆ B(n−2)).

(1) Then A(n−2) ⊆ Z̃ℓ
B(n)(A

(n)) (resp. A(n−2) ⊆ Z̃r
B(n)(A

(n))).

(2) If B(n) has a left (resp. right) unit element in Z̃ℓ
B(n)(A

(n)) (resp.

Z̃r
B(n)(A

(n))), then A is reflexive.

(3) If A(n−2) ⊂ B(n−2) and A(n−2) is left (resp. right) Arens irregu-
lar, then

A(n−2) = Z̃ℓ
B(n)(A

(n)) (resp. A(n−2) = Z̃r
B(n)(A

(n))).

Proof. (1) Assume that (b
(n)
α )α ⊆ B(n) such that b

(n)
α

w∗
→ b(n) in B(n).

Let b(n+1) ∈ B(n+1). Since B(n+1) = B(n−1) ⊕ B⊥, there are
b(n−1) ∈ B(n−1) and t ∈ B⊥ such that b(n+1) = (b(n−1), t). Then

for every a(n−2) ∈ A(n−2), we have

⟨b(n+1), a(n−2)b(n)α ⟩ = ⟨(b(n−1), t), a(n−2)b(n)α ⟩

= ⟨a(n−2)b(n)α , b(n−1)⟩

→ ⟨a(n−2)b(n), b(n−1)⟩

= ⟨b(n+1), a(n−2)b(n)⟩.

It follows that A(n−2) ⊂ Z̃ℓ
B(n)(A

(n)).

(2) The proof is clear.

(3) Since A(n−2) ⊂ B(n−2), Z̃ℓ
B(n)(A

(n)) ⊂ Z1(A
(n)) = A(n−2). Thus

by using part (1), since Z̃ℓ
B(n)(A

(n))) ⊆ Zℓ
B(n)(A

(n))), we are
done.

�

Example 2.10. Let G be a compact group. We know that L1(G) ⊆
M(G) and L1(G) is an ideal in M(G)∗∗. Since L1(G) is strongly Arens
irregular, by preceding theorem, we conclude that

Z̃ℓ
M(G)∗∗(L

1(G)∗∗) ⊆ Zℓ
M(G)∗∗(L

1(G)∗∗) ⊆ Zℓ
1(L

1(G)∗∗) = L1(G).

By Theorem 2.9, we have L1(G) ⊆ Z̃ℓ
M(G)∗∗(L

1(G)∗∗). Thus we conclude

that

L1(G) = Z̃ℓ
M(G)∗∗(L

1(G)∗∗).

It is similar that

L1(G) = Z̃r
M(G)∗∗(L

1(G)∗∗).
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3. Weak amenability of Banach algebras

A Banach algebra A is said to be a weakly amenable, if every deriva-
tion from A into A∗ is inner. Similarly, A is weakly amenable if and
only if H1(A,A∗) = Z1(A,A∗)/N1(A,A∗) = {0}. The concept of weak
amenability was first introduced by Bade, Curtis and Dales in [2] for
commutative Banach algebras, and was extended to the noncommuta-
tive case by Johnson in [15]. In every parts of this section, n ≥ 0 is an
even number.

Theorem 3.1. Assume that A is a Banach algebra and Z̃ℓ
1(A

(n)) =

A(n) where n ≥ 2. If A(n) is weakly amenable, then A(n−2) is weakly
amenable.

Proof. Suppose that D ∈ Z1(A(n−2), A(n−1)). First we show that

D′′ ∈ Z1(A(n), A(n+1)).

Let a(n), b(n) ∈ A(n) and let (a
(n−2)
α )α, (b

(n−2)
β )β ⊆ A(n−2) such that

a
(n−2)
α

w∗
→ a(n) and b

(n−2)
β

w∗
→ b(n). Since Zℓ

1(A
(n)) = A(n) we have

lim
α

lim
β

a(n−2)
α D(b

(n−2)
β ) = a(n)D′′(b(n)).

On the other hand, we have

lim
α

lim
β

D(a(n−2)
α )b

(n−2)
β = D′′(a(n))b(n).

Since D is continuous, we conclude that

D′′(a(n)b(n)) = lim
α

lim
β

D(a(n−2)
α b

(n−2)
β )

= lim
α

lim
β

a(n−2)
α D(b

(n−2)
β ) + lim

α
lim
β

D(a(n−2)
α )b

(n−2)
β

= a(n)D′′(b(n)) +D′′(a(n))b(n).

In the above equalities, the convergence are with respect to weak∗

topology. Since A(n) is weakly amenable, D′′ is inner. It follows that
D′′(a(n)) = a(n)a(n+1)−a(n+1)a(n) for some a(n+1) ∈ A(n+1). Set a(n−1) =

a(n+1) |A(n−2) and

a(n−2) ∈ A(n−2). Then

D(a(n−2)) = D′′(a(n−2)) = a(n−2)a(n−1) − a(n−1)a(n−2) = δa(n−1)(a(n−2)).

Consequently, we have H1(A(n−2), A(n−1)) = 0, and so A(n−2) is weakly
amenable. �
Corollary 3.2. Let A be a Banach algebra and let w̃apℓ(A

(n−1)) ⊆ A(n)

whenever n ≥ 1. If A(n) is weakly amenable, then A(n−2) is weakly
amenable.
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Proof. Since w̃apℓ(A
(n−1)) ⊆ A(n), Z̃ℓ

1(A
(n)) = A(n). Then, by using

Theorem 3.1, proof holds. �
Corollary 3.3. Let A be a Banach algebra and Zℓ

A(n)(A(n+1)) = A(n+1),

where n ≥ 2. If A(n) is weakly amenable, then A(n−2) is weakly amenable.

Corollary 3.4. Let A be a Banach algebra and let D : A(n−2) → A(n−1)

be a derivation where n ≥ 2. Then D′′ : A(n) → A(n+1) is a derivation
when Z̃ℓ

1(A
(n)) = A(n).

Theorem 3.5. Let A be a Banach algebra and let B be a closed subal-
gebra of A(n) that is consisting of A(n−2) where n ≥ 2. If Z̃ℓ

1(B) = B

and B is weakly amenable, then A(n−2) is weakly amenable.

Proof. Suppose that D : A(n−2) → A(n−1) is a derivation and p :
A(n+1) → B∗ is the restriction map, defined by P (a(n+1)) = a(n+1) |B
for every a(n+1) ∈ A(n+1). Since Z̃ℓ

1(B) = B, D̄ = PoD′′ |B: B → B′

is a derivation. Since B is weakly amenable, there is b′ ∈ B∗ such that
D̄ = δb′ . We take a(n−1) = b′ |A(n−2) , then D = D̄ on A(n−2). Conse-
quently, we have D = δa(n−1) . �
Corollary 3.6. Let A be a Banach algebra. If A∗∗∗A∗∗ ⊆ A∗ and A is
weakly amenable, then A∗∗ is weakly amenable.

Proof. By using Corollary 2.4 and Theorem 3.2, proof holds. �
Corollary 3.7. Let A be a Banach algebra and let Z̃ℓ

1(A
(n)) be weakly

amenable whenever n ≥ 2. Then A(n−2) is weakly amenable.

Theorem 3.8. Let B be a Banach A − bimodule and D : A(n) →
B(n+1) be a derivation for n ≥ 0. If Z̃ℓ

A(n+2)(B(n+2)) = B(n+2), then

D′′ : A(n+2) → B(n+3) is a derivation.

Proof. Let x(n+2), y(n+2) ∈ A(n+2) and let (x
(n)
α )α, (y

(n)
β )β ⊆ A(n)

such that x
(n)
α

w∗
→ x(n+2) and y

(n)
β

w∗
→ y(n+2) in A(n+2). Then for all

b(n+2) ∈ B(n+2), we have b(n+2)x
(n)
α

w→ b(n+2)x(n+2). Consequently, since

Z̃ℓ
A(n+2)(B(n+2)) = B(n+2), we have

⟨x(n)α D′′(y(n+2)), b(n+2)⟩ = ⟨D′′(y(n+2)), b(n+2)x(n)α ⟩

→ ⟨D′′(y(n+2)), b(n+2)x(n+2)⟩

= ⟨x(n+2)D′′(y(n+2)), b(n+2)⟩.
Also we have the following equality

⟨D′′(x(n+2))y
(n)
β , b(n+2)⟩ = ⟨D′′(x(n+2)), y

(n)
β b(n+2)⟩

→ ⟨D′′(x(n+2)), y(n+2)b(n+2)⟩

= ⟨D′′(x(n+2))y(n+2), b(n+2)⟩.
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Since D is continuous, it follows that

D′′(x(n+2)y(n+2)) = lim
α

lim
β

D(x(n)α y
(n)
β )

= lim
α

lim
β

x(n)α D(y
(n)
β ) + lim

α
lim
β

D(x(n)α )y
(n)
β

= x(n+2)D′′(y(n+2)) +D′′(x(n+2))y(n+2).

�
Corollary 3.9. Let B be a Banach A−bimodule and Z̃ℓ

A∗∗(B∗∗) = B∗∗.
If H1(A,B∗) = 0, then H1(A∗∗, B∗∗∗) = 0.

Corollary 3.10. Let B be a Banach A − bimodule and Z̃ℓ
A∗∗(B∗∗) =

B∗∗. If D : A → B∗ is a derivation, then D′′(A∗∗)B∗∗ ⊆ A∗.

Proof. By using Theorem 3.8, Corollary 3.3 and [19] proof holds. �

4. Cohomological properties of Banach algebras

Let A be a Banach algebra and n ≥ 0. Then A is called n − weakly
amenable ifH1(A,A(n)) = 0, and is called permanently weakly amenable
whenA is n−weakly amenable for each n ≥ 0. In [5] Dales, Ghahramani,
and Gronbaek introduced the concept of n-weak amenability for Banach
algebras for each natural number n. They determined some relations
between m- and n-weak amenability for general Banach algebras and for
Banach algebras in various classes, and proved that, for every n, (n +
2)- weak amenability always implies n-weak amenability.

Theorem 4.1. Let B be a Banach A − bimodule and let n ≥ 1. If
H1(A,B(n+2)) = 0, then H1(A,B(n)) = 0.

Proof. Let D ∈ Z1(A,B(n)) and i : B(n) → B(n+2) be the canonical lin-

ear mapping as A− bimodule homomorphism. Take D̃ = ioD. Then we

can be viewed D̃ as an element of Z1(A,B(n+2)). Since H1(A,B(n+2)) =

0, there exist b(n+2) ∈ B(n+2) such that

D̃(a) = ab(n+2) − b(n+2)a,

for all a ∈ A. Set a A − linear mapping P from B(n+2) into B(n)

such that Poi = IB(n) . Then we have PoD̃ = (Poi)oD = D, and so

D(a) = PoD̃(a) = aP (b(n+2))−P (b(n+2))a for all a ∈ A. It follows that

D ∈ N1(A,B(n)). Consequently H1(A,B(n)) = 0. �
Theorem 4.2. Let B be a Banach A−bimodule and D : A → B(2n) be a
continuous derivation. Assume that Zℓ

A(2n)(B
(2n)) = B(2n). Then there

is a continuous derivation D̃ : A(2n) → B(2n) such that D̃(a) = D(a) for
all a ∈ A.
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Proof. By using Proposition 1.7 from [5], the linear mapping D′′ : A∗∗ →
B(2n+2) is a continuous derivation. TakeX = B(2n−2). Since ZA(2n)(X∗∗) =

ZA(2n)(B(2n)) = B(2n) = X∗∗, by Proposition 1.8 from [5] the canoni-

cal projection P : X(4) → X∗∗ is a A∗∗ − bimodule morphism. Set

D̃ = PoD′′. Then D̃ is a continuous derivation from A∗∗ into B(2n).
Now by replacing A∗∗ by A and repeating of the proof, result holds. �

Corollary 4.3. Let B be a Banach A − bimodule and n ≥ 0. If
Zℓ
A(2n)(B

(2n)) = B(2n) and H1(A(2n+2), B(2n+2)) = 0, then H1(A,B(2n)) =
0.

Proof. By using Proposition 1.7 from [5] and preceding theorem the
result holds. �
Corollary 4.4. [5]. Let A be a Banach algebra such that A(2n) is Arens

regular and H1(A(2n+2)), A(2n+2)) = 0 for each n ≥ 0. Then A is 2n −
weakly amenable.

Assume that A is Banach algebra and n ≥ 0. We define A[n] as a
subset of A as follows

A[n] = {a1a2...an : a1, a2, ...an ∈ A}.
We write An the linear span of A[n] as a subalgebra of A.

Theorem 4.5. Let A be a Banach algebra and n ≥ 0. Let A[2n] dense
in A and suppose that B is a Banach A− bimodule. Assume that AB∗∗

and B∗∗A are subsets of B. If H1(A,B∗) = 0, then H1(A,B(2n+1)) = 0.

Proof. For n = 0 the result is clear. Let B⊥ be the space of functionals in
B(2n+1) which annihilate i(B) where i : B → B(2n) is a natural canonical
mapping. Then, by using lemma 1 [23], we have the following equality

B(2n+1) = i(B∗)⊕B⊥,

it follows that

H1(A,B(2n+1)) = H1(A, i(B∗))⊕H1(A,B⊥).

Without lose generality, we replace i(B∗) by B∗. Since H1(A,B∗) = 0,
it is enough to show that H1(A,B⊥) = 0.
Now, take the linear mappings La and Ra from B into itself by La(b) =
ab and Ra(b) = ba for all a ∈ A. Since AB∗∗ ⊆ B and B∗∗A ⊆ B,
L∗∗
a (b′′) = ab′′ and R∗∗

a (b′′) = b′′a for every a ∈ A, respectively. Conse-
quently, La and Ra from B into itself are weakly compact. It follows that

for each a ∈ A the linear mappings L
(2n)
a and R

(2n)
a from B(n) into B(n)

are weakly compact and for every b(2n) ∈ B(2n), we have L
(2n)
a (b(2n)) =

ab(2n) ∈ B(2n−2) and R
(2n)
a (b(2n)) = b(2n)a ∈ B(2n−2). Set a1, a2, ..., an ∈
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A and b(2n) ∈ B(2n). Then a1a2...anb
(2n) and b(2n)a1a2...an are belong

to B. Suppose that D ∈ Z1(A,B⊥) and let a, x ∈ A[n]. Then for every

b(2n) ∈ B(2n), since xb(2n), b(2n)a ∈ B, we have the following equality

⟨D(ax), b(2n)⟩ = ⟨aD(x), b(2n)⟩+ ⟨D(a)x, b(2n)⟩

= ⟨D(x), b(2n)a⟩+ ⟨D(a), xb(2n)⟩ = 0.

It follows that D |A[2n]= 0. Since A[2n] dense in A, D = 0. Hence
H1(A,B⊥) = 0 and result follows. �

Corollary 4.6. (1) Let A be a Banach algebra with left bounded ap-
proximate identity, and let B be a Banach A−bimodule. Suppose
that AB∗∗ and B∗∗A are subset of B. Then H1(A,B(2n+1)) = 0
for all n ≥ 0, whenever H1(A,B∗) = 0.

(2) Let A be an amenable Banach algebra and B be a Banach A −
bimodule. If AB∗∗ and B∗∗A are subset of B, then H1(A,B(2n+1)) =
0.

Example 4.7. Assume that G is a compact group.

(1) We know that L1(G) isM(G)−bimodule and L1(G) is an ideal in
the second dual of M(G), M(G)∗∗. By using corollary 1.2 from
[18], we have H1(L1(G),M(G)∗) = 0. Then for every n ≥ 1, by
using preceding corollary, we conclude that

H1(L1(G),M(G)(2n+1)) = 0.

(2) Since L1(G) is an ideal in its second dual , L1(G)∗∗, by using
[15], L1(G) is a weakly amenable. Then by preceding corollary,
L1(G) is (2n+ 1)− weakly amenable.

Corollary 4.8. Let A be a Banach algebra and let A[2n] be dense in A.
Suppose that AB∗∗ and B∗∗A are subset of B. Then the following are
equivalent.

(1) H1(A,B∗) = 0.

(2) H1(A,B(2n+1)) = 0 for some n ≥ 0.

(3) H1(A,B(2n+1)) = 0 for each n ≥ 0.

Corollary 4.9. [5]. Let A be a weakly amenable Banach algebra such
that A is an ideal in A∗∗. Then A is (2n + 1) − weakly amenable for
each n ≥ 0.

Proof. By using Proposition 1.3 from [5] and preceding theorem, result
holds. �

Assume that A and B are Banach algebras. Then A⊕B , with norm

∥ (a, b) ∥=∥ a ∥ + ∥ b ∥,
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and product (a1, b1)(a2, b2) = (a1a2, b1b2) is a Banach algebra. It is
clear that if X is a Banach A and B − bimodule, then X is a Banach
A⊕B − bimodule.
In the following, we investigated the relationships between the cohomo-
logical property of A⊕B with A and B.

Theorem 4.10. Suppose that A and B are Banach algebras. Let X be
a Banach A and B − bimodule. Then, H1(A⊕B,X) = 0 if and only if
H1(A,X) = H1(B,X) = 0.

Proof. Suppose that H1(A ⊕ B,X) = 0. Assume that D1 ∈ Z1(A,X)
and D2 ∈ Z1(B,X). Take D = (D1, D2). Then for every a1, a2 ∈ A and
b1, b2 ∈ B, we have

D((a1, b1)(a2, b2)) = D(a1a2, b1b2) = (D1(a1a2), D2(b1b2))

= (a1D1(a2) +D1(a1)a2, b1D2(b2) +D2(b1)b2)

= (a1D1(a2), b1D2(b2)) + (D1(a1)a2 +D2(b1)b2)

= (a1, b1)(D1(a2), D2(b2)) + (D1(a1), D2(b1))(a2, b2)

= (a1, b1)D(a2, b2) +D(a1, b1)(a2, b2).

It follows that D ∈ Z1(A ⊕ B,X). Since H1(A ⊕ B,X) = 0, there is
x ∈ X such that D = δx where δx ∈ N1(A⊕ B,X). Since δx = (δ1x, δ

2
x)

where δ1x ∈ N1(A,X) and δ2x ∈ N1(B,X), we haveD1 = δ1x andD2 = δ2x.
Thus H1(A,X) = H1(B,X) = 0.
For the converse, take A as an ideal in A⊕B, and so by using Proposition
2.8.66 from [4], proof holds. �

Example 4.11. Let G be a locally compact group and X be a Banach
L1(G)−bimodule. Then by [5], pp.27 and 28, X∗∗ is a Banach L1(G)∗∗−
bimodule. Since L1(G)∗∗ = LUC(G)∗ ⊕ LUC(G)⊥, by using preceding
theorem, we have

H1(L1(G)∗∗, X∗∗) = 0

if and only if H1(LUC(G)∗, X∗∗) = H1(LUC(G)⊥, X∗∗) = 0.
On the other hand, we know that L1(G)∗∗ = L1(G) ⊕ C0(G)⊥. By
[15], we know that, H1(L1(G), L∞(G)) = 0. Then by using preceding
theorem, H1(L1(G)∗∗, L∞(G)) = 0, if and only ifH1(C0(G)⊥, L∞(G)) =
0.
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