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Abstract. This paper is devoted to the notion digital pseudocov-
ering map introduced by Han [?]. We show that, according to Han,s
definition, a function is a pseudocovering map if and only if it is a
covering map. We give a modified definition of pseudocovering in
order to obtain the results Han sought.
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1. Introduction and Motivation

In classical topology, there exist continuous maps f : X −→ Y that
behave like covering maps except in the neighborhood of one point.
These maps and their important role in the characterization of fun-
damental groups have been widely studied and they have led to some
generalizations of covering theory such as semicovering theory [?] and
generalized covering theory [?, ?].

In parallel, there are some non-examples of digital covering maps in
digital topology that enjoy many properties of digital covering maps such
path lifting property and unique path lifting property. As an example, a
digital map obtained by restricting the domain of a digital covering map
is not necessarily a digital covering maps but has uniqueness of digital
path liftings. This has made it important to generalize the notion digital
covering map.
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Han [?] has introduced a generalization of digital covering maps,
named digital pseudocovering map, by weakening the local isomorphism
condition in the definition of digital covering maps.

At first, we show that his examples are either digital isomorphisms or
do not satisfy all conditions of a digital pseudocovering map. Then, we
will prove that his conditions in the definition of digital pseudocovering
maps are incompatible. In fact, any digital map that applies to these
conditions will be the same as the old digital covering map. Finally, by
a little modification in one of the conditions, we come to a definition
that provides the desired properties.

2. Notations and preliminaries

For a positive integer u with 1 ≤ u ≤ n, an adjacency relation of a
digital image in Zn is defined as follows:
Two distinct points p = (p1, p2, ..., pn) and q = (q1, q2, ..., qn) in Zn are lu-
adjacent [?] if there are at most u distinct indices i such that |pi−qi| = 1
and for all indices j, pj = qj if |pj − qj | ̸= 1. An lu-adjacency relation
on Zn can be denoted by the number of points that are lu-adjacent to a
given point p ∈ Zn. For example,

• The l1-adjacent points of Z are called 2-adjacent.
• The l1-adjacent points of Z2 are called 4-adjacent and the l2-
adjacent points in Z2 are called 8-adjacent.

• The l1-adjacent, l2-adjacent and l3-adjacent points of Z3 are
called 6-adjacent, 18-adjacent, and 26-adjacent, respectively.

More general adjacency relations are studied in [?].
Let κ be an adjacency relation defined on Zn and X ⊆ Zn. Then

the pair (X,κ) is said to be a (binary) digital image. A digital image
X ⊆ Zn is κ-connected [?] if and only if for every pair of different
points x, y ∈ X, there is a set x0, x1, ..., xr of points of a digital image
X such that x = x0, y = xr and xi and xi+1 are κ-adjacent where
i = 0, 1, ..., r − 1.

Proposition 2.1. ([?, ?]) Let (X,κ) in Zn and (Y, λ) in Zm be digital
images. A function f : X −→ Y is (κ, λ)-continuous if and only if for
every κ-adjacent points x0, x1 ∈ X, either f(x0) = f(x1) or f(x0) and
f(x1) are λ-adjacent in Y .

For a, b ∈ Z with a < b, a digital interval [?] is a set of the form

[a, b]Z = {z ∈ Z|a ≤ z ≤ b}.
Definition 2.2. By a digital κ-path from x to y in a digital image
(X,κ), we mean a (2, κ)-continuous function f : [0,m]Z −→ X such that
f(0) = x and f(m) = y. If f(0) = f(m) then the κ-path is said to be
closed, and f is called a κ-loop.
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Let f : [0,m − 1]Z −→ X ⊆ Zn be a (2, κ)-continuous function such
that f(i) and f(j) are κ-adjacent if and only if j = i± 1 mod m. Then
f is called a simple κ-path and the set f([0,m− 1]Z) is called a simple
closed κ-curve containing m points which is denoted by SCn,m

κ . We say
that the length of a simple κ-path is the number m. If f is a constant
function, it is called a trivial loop.

If f : [0,m1]Z −→ X and g : [0,m2]Z −→ X are digital κ-paths with
f(m1) = g(0), then define the product [?] (f ∗ g) : [0,m1 +m2]Z −→ X
by

(f ∗ g)(t) =

{
f(t) if t ∈ [0,m1]Z;

g(t−m1) if t ∈ [m1,m1 +m2]Z.

Let (E, κ) be a digital image and let ε ∈ N . The κ-neighborhood [8] of
e0 ∈ E with radius ε is the set Nκ(e0, ε) = {e ∈ E| lκ(e0, e) ≤ ε} ∪ {e0},
where lκ(e0, e) is the length of a shortest κ-path from e0 to e in E.

The function f : X −→ Y is a (κ, λ)-isomorphism [?], if f is a (κ, λ)-
continuous bijection and further f−1 : Y −→ X is (λ, κ)-continuous. In

this case, X,Y are called (κ, λ)-isomorphic, denoted by X
(κ,λ)
≈ Y . If

n = m and κ = λ, then f is called a κ-isomorphism.

Definition 2.3. [?] For two digital spaces (X,κ) in Zn and (Y, λ) in
Zm, a (κ, λ)-continuous map h : X −→ Y is called a local (κ, λ)-
isomorphism if for every x ∈ X, h|Nκ(x,1) is a (κ, λ)-isomorphism onto
Nλ(h(x), 1). If n = m and κ = λ, then the map h is called a local
κ-isomorphism.

Definition 2.4. [?] For two digital spaces (X,κ) and (Y, λ), a map
h : X −→ Y is called a weakly local (κ, λ)-isomorphism if for every
x ∈ X, h|Nκ(x,1) is a weak (κ, λ)-isomorphism that means h maps
(κ, λ)-isomorphically Nκ(x, 1) onto h(Nκ(x, 1)).

In the definition of local isomorphism we can remove the condition of
the continuity of h, because continuity is a local notion and for every
x ∈ X, h|Nκ(x,1) is a (κ, λ)-isomorphism and hence h is continuous. Also,
it is notable that the difference between local isomorphisms and weakly
local isomorphisms is surjectivity of h|Nκ(x,1).

Definition 2.5. [?, ?, ?] Let (E, κ) and (B, λ) be digital images and
p : E −→ B be a (κ, λ)-continuous surjection. The map p is called a
(κ, λ)-covering map if and only if for each b ∈ B there exists an index
set M such that
(1) p−1(Nλ(b, 1)) =

⊔
i∈M

Nκ(ei, 1) with ei ∈ p−1(b);

(2) if i, j ∈ M , i ̸= j, then Nκ(ei, 1) ∩Nκ(ej , 1) = ∅; and
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(3) the restriction map p|Nκ(ei,1) : Nκ(ei, 1) −→ Nλ(b, 1) is a (κ, λ)-
isomorphism for all i ∈ M .

Moreover, (E, p,B) is said to be a (κ, λ)-covering and (E, κ) is called
a digital (κ, λ)-covering space over (B, λ). Also, Nλ(b, 1) is called an
elementary λ-neighborhood of b or a coverable λ-neighborhood of b.

Definition 2.6. [?] Let (E, κ), (B, λ), and (X,µ) be digital images,
let p : E −→ B be a (κ, λ)-covering map, and let f : X −→ B be
(µ, λ)-continuous. A lifting of f with respect to p is a (µ, κ)-continuous

function f̃ : X −→ E such that p ◦ f̃ = f .

Theorem 2.7. [?] Let (E, κ) be a digital image and e0 ∈ E. Let (B, λ)
be a digital image and b0 ∈ B. Let p : E −→ B be a (κ, λ)-covering map
such that p(e0) = b0. Then any λ-path α : [0,m]Z −→ B beginning at b0
has a unique lifting to a path α̃ in E beginning at e0.

Definition 2.8. [?] Let p : (E, κ) → (B, λ) be a (κ, λ)-continuous sur-
jection map. We say that
(i) p has digital path lifting property if for any digital path α in B
and any e ∈ p−1(α(0)) there is a lifting α̃ of α in E such that α̃(0) = e.
(ii) p has the uniqueness of digital path lifts property if any two
paths α, β : [0,m]Z −→ E are equal if p ◦ α = p ◦ β and α(0) = β(0).
(iii) p has the unique path lifting property (u.p.l, for abbreviation)
if it has both the path lifting property and the uniqueness of path lifts
property.

Although it was proved that every digital covering map is a local
isomorphism and the converse is not true in general ([?, ?]), the author
with M. Zakki [?] have shown that the given counterexample is not
correct and have proved the inverse as follows.

Theorem 2.9. [?] Let p : (E, κ) → (B, λ) be a (κ, λ)-continuous sur-
jection map. Then p is a digital covering if and only if it is a local
isomorphism.

In this paper, all the digital spaces assumed to be connected.

3. Nihility of pseudocovering map

In the algebraic topology, there are some examples of maps that are
not coverings but have many of their features. For example exp :
(0,+∞) −→ S1 defined by exp(t) = e2πti is not a covering map but
every x ∈ S1 has a coverable open neighborhood except (1, 0).

In digital topology we have also such maps. For example, let

f : Z+ −→ SCn,l
κ := (ci)

l−1
i=0; l ≥ 4,
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Figure 1.

by f(i) = ci mod l, where Z+ = {k ∈ Z|k ≥ 0} . For every ci, except c0,
Nκ(ci, 1) is coverable. Also, for c0, all components of f−1(Nκ(c0, 1)) are
isomorphic to Nκ(c0, 1) except N2(0, 1). This motivates us to generalize
digital covering map in order to include more classes of maps. Pseudo-
covering maps, introduced by Han [?], seems to be one of these possible
generalizations, although we will also mention its defect.

Definition 3.1. ([?]) Let (E, κ0) and (B, κ1) be digital spaces in Zn0

and Zn1 , respectively. Let p : (E, κ0) −→ (B, κ1) be a surjection.
Suppose that for any b ∈ B the map p has the following properties:

(1) for some index set M, p−1(Nκ1(b, 1)) =
⊔

i∈M Nκ0(ei, 1) with

ei ∈ p−1(b),
(2) if i, j ∈ M and i ̸= j, then Nκ0(ei, 1) ∩ Nκ0(ej , 1) is an empty

set; and
(3) the restriction of p on Nκ0(ei, 1) is a weak (k0, k1)-isomorphism

for all i ∈ M .

Then the map p is called a (k0, k1)-pseudocovering map, (E, p,B) is
said to be a (k0, k1)-pseudocovering and (E, k0) is called a (k0, k1)-
pseudocovering space over (B, k1).

This definition is like the definition of a digital covering map, but
p|Nκ0 (ei,1)

is weak (k0, k1)-isomorphism rather than (k0, k1)-isomorphism.

In [?] it is claimed that the map f , introduced above is a pseudocov-
ering map. In the following we show that it is not true.

Proposition 3.2. The map f : Z+ −→ SCn,l
κ := (ci)

l−1
i=0; l ≥ 4, defined

by f(i) = ci mod l is not a digital pseudocovering map.

Proof. Consider the point cl−1. Since c0 ∈ Nκ(cl−1, 1), 0 ∈ p−1(Nκ(cl−1, 1)).
By the condition (1) of the definition of digital pseudocovering map,
p−1(Nκ(cl−1, 1)) =

⊔
k∈NN2((l − 1)k, 1). But for every k ∈ N, 0 /∈

N2((l − 1)k, 1) because (l − 1)k is at least 3, as it is shown in Figure 1.
This shows that f can not be a pseudocovering map. □

This disability can be found in Example 4.3, [?], part (1) and it can
easily be checked that maps g, h and p (in [?]) are isomorphisms. The
following theorem will end all ambiguities.

Theorem 3.3. Every map satisfying the conditions of pseudocovering
map is a covering map.

Proof. Let (E, κ0) and (B, κ1) be digital spaces in Zn0 and Zn1 , respec-
tively and p : (E, κ0) −→ (B, κ1) be a pseudocovering map which is not
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a covering map. Then there exists b ∈ B and e ∈ p−1({b}) such that the
restriction of p on Nκ0(e, 1) is a weak (k0, k1)-isomorphism and is not
onto Nκ1(b, 1). So there exists b′ ∈ Nκ1(b, 1)− p

(
Nκ0(e, 1)

)
such that

Nκ0(e, 1) ∩ p−1(b′) = ∅ (3.1)

Since b and b′ are κ1-adjacent, e ∈ p−1(b) ⊂ p−1
(
Nκ1(b

′, 1)
)
. Also,

p−1
(
Nκ1(b

′, 1)
)
=

⊔
i∈M Nκ0(e

′
i, 1) which implies that there exists j ∈ M

such that e ∈ Nκ0(e
′
j , 1) where e′j ∈ Nκ0(e, 1) ∩ p−1(b′). But this is a

contradiction of equation 3.1. □

Now, we can correct the definition of the digital pseudocovering map.

Definition 3.4. Let (E, κ0) and (B, κ1) be digital spaces in Zn0 and
Zn1 , respectively. Let p : (E, κ0) −→ (B, κ1) be a surjection. Suppose
that for any b ∈ B the map p has the following properties:

(1) for some index set M,
⊔

i∈M Nκ0(ei, 1) ⊆ p−1(Nκ1(b, 1)) with

ei ∈ p−1(b),
(2) if i, j ∈ M and i ̸= j, then Nκ0(ei, 1) ∩ Nκ0(ej , 1) is an empty

set; and
(3) the restriction map p|Nκ0 (ei,1)

: Nκ0(ei, 1) −→ p
(
Nκ0(ei, 1)

)
is a

(k0, k1)-isomorphism for all i ∈ M .

Then the map p is called a (k0, k1)-pseudocovering map.

Han [?] proved that his digital pseudocovering maps have the unique
lifting property (but not by this name!!!). Although we have changed
the definition, but his proof of the following is valid.

Proposition 3.5. Let (E, κ0) and (B, κ1) be digital connected spaces
in Zn0 and Zn1, let p : (E, κ0) −→ (B, κ1) be a digital pseudocovering
map and let f : (X,λ) −→ (B, κ1) be a digital continuous map such that
(X,λ) is a digital connected space and f(x0) = b0. Given e0 ∈ p−1(b0),

there is at most one digitally continuous map f̃ : (X,λ) −→ (E, κ0) with

p ◦ f̃ = f and f̃(x0) = e0.

Proof. See [?, Theorem 4.9]. □

Since digital intervals are 2-connected, we have the following corollary.

Corollary 3.6. Digital pseudocovering maps have the uniqueness of dig-
ital path lifts property.

Remark 3.7. It is notable that the uniqueness of digital path lifts property
in [?] was introduced as the unique pseudolifting property. But in order
to coordinate with common texts in algebraic topology, we have used the
uniqueness of digital path lifts property. Also, Han has used the unique
lifting property for the existence of liftings of paths. It is emphasized
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that the digital path lifting property means existence of liftings of a
path and the unique path lifting property means the digital path lifting
property and the uniqueness of digital path lifts.

With this corrected definition, a digital pseudocovering map may not
have the unique path lifting property. For, if f : Z+ −→ SC2,4

8 := (ci)
3
i=0,

is defined by f(i) = ci mod 4 (as in Figure 1) and α : [0, 1]Z −→ SC2,4
8

is defined by α(0) = c0 and α(1) = c3, then there is no lifting for α
beginning at 0.

Corollary 3.8. Digital pseudocovering maps do not, in general, have
the unique path lifting property.
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