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Abstract. The aim of this paper is to introduce the concepts of
α-continuity, η-admissible pair for fuzzy set-valued maps and define
the notion of fuzzy η−(ψ, F )-contraction. The existence of common
fuzzy fixed points for such contraction is investigated in the setting
of a complete metric space. The ideas presented herein complement
the results of Wardowski, Banach, Heilpern and related results on
point-to-point and point-to-set-valued mappings in the literature of
classical and fuzzy fixed point theory. A few important of these
special consequences are highlighted and discussed. Some nontriv-
ial examples and an application to a system of integral inclusions of
Fredholm type are considered to support and illustrate some use-
fulness of our obtained results herein.
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1. Introduction

Several problems in science and engineering defined by nonlinear func-
tional equations can be solved by reducing them to an equivalent fixed-
point problem. In fact, an operator equation ϕx = 0 may be refor-
mulated as a fixed-point equation ρx = x, where ρ is a self-mapping
with a suitable domain. Fixed point theory provides important tools
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for solving problems arising in various branches of mathematical anal-
ysis, such as split feasibility problems, variational inequality problems,
nonlinear optimization problems, equilibrium problems, complementar-
ity problems, selection and matching problems, and problems of proving
the existence of solution of integral and differential equations. In par-
ticular, the fixed point theorem, generally known as the Banach Con-
traction Principle (see [7]), appeared in explicit form in Banach Thesis
in 1922, where it was originally applied to establish the existence of
a solution to an integral equation. Since then, because of its simplic-
ity and usefulness, it has become a significant tool in solving existence
problems in many branches of mathematical analysis. Consequently, the
principle has gained a number of generalizations and modifications by
many authors. Wardowski [33] introduced a new contraction known as
F -contraction and established a fixed point result which generalizes the
Banach fixed point theorem. Thereafter, the concept of F -contraction
has been extended in different directions (see, e.g. [3, 13, 24, 26]). In
2012, Samet et al. [28] introduced the notions of η−ψ-contractive and η-
admissible mappings and extended many existing results, in particular,
the contraction mapping principle due to Banach [7]. Meanwhile, the
concepts of η − ψ-contractive and η-admissibility have attracted keen
interests of many researchers and thus have been modified in several
settings (see, e.g. [16, 17, 22, 27]).

On the other hand, as a natural generalization of the notion of crisp
sets, fuzzy set was introduced originally by Zadeh [34]. Since then, to
use this concept, many authors have progressively extended the theory
and its applications to other branches of sciences, social sciences and
engineering. In 1981, Heilpern [12] used the idea of fuzzy set to initiate
a class of fuzzy set-valued maps and proved a fixed point theorem for
fuzzy contraction mappings which is a fuzzy analogue of the fixed point
theorem of Nadler [23]. Subsequently, several authors have studied the
existence of fixed points of fuzzy set-valued maps, for example, see [1,
5, 6, 14, 19, 20, 29, 32].

By combining the notions of F -contractions and η-admissible map-
pings, the main aim of this paper is to introduce the concepts of α-
continuity, η-admissible pair for fuzzy set-valued maps and define the
concept of fuzzy η − (ψ, F )-contraction. Thereafter, the existence of
common fuzzy fixed points for such contraction is investigated in the
setting of a complete metric space. The ideas presented herein comple-
ment the results of Wardowski [33], Banach [7], Heilpern [12] and others
in the comparable literature of classical and fuzzy fixed point theory. A
few significant of these consequences of our results are pointed out and
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discussed. Some examples and an application to a system of integral in-
clusions of Fredholm type are considered to support our assertions and
to illustrate a usability of the results obtained herein.

2. Preliminaries

Throughout this article, the sets R, R+ and N, represent the set of
real numbers, positive real numbers and natural numbers, respectively.
In this section, we collect some basic concepts and results which are
relevant to what follows hereafter.

Definition 2.1. [33] Let (X,µ) be a metric space. A mapping T :
X −→ X is called an F -contraction, if there exists ξ > 0 such that

µ(Tx, Ty) > 0 ⇒ ξ + F (µ(Tx, Ty)) ≤ F (µ(x, y)) (2.1)

for all x, y ∈ X, where F : R+ −→ R is a mapping satisfying the
following axioms:

(F1) F is strictly increasing; that is, τ < β =⇒ F (τ) < F (β),
(F2) for any sequence {τn}n∈N of positive real numbers, limn−→∞ τn =

0 if and only if limn−→∞ F (τn) = −∞,
(F3) there exists ς ∈ (0, 1) such that limn−→∞ τ ςF (τ) = 0.

We denote the family of functions satisfying (F1)− (F3) by Ω.

Example 2.2. [33] The functions F : R+ −→ R defined by

(i) F (τ) = ln(τ),
(ii) F (τ) = ln(τ) + τ, τ > 0,
(iii) F (τ) = −1√

τ
, τ > 0,

(iv) F (τ) = ln(τ2 + τ), τ > 0,

are elements of Ω.

Denote by M, the family of nondecreasing functions ψ : R+ −→ R
such that

∑∞
n=1 ψ

n(t) <∞, for each t > 0, where ψn(t) is the nth-iterate
of ψ. The main result of Wardowski [33], which is a generalization of
the Banach fixed point theorem [7] is stated as follows.

Theorem 2.3. [33] Let (X,µ) be a complete metric space and T : X −→
X be an F -contraction. Then T has a unique fixed point in X.

Definition 2.4. [28] Let (X,µ) be a metric space and T : X −→ X
be a given mapping. Then T is called an η − ψ-contractive mapping if
there exist two functions η : X × X −→ R+ and ψ ∈ M such that for
all x, y ∈ X,

η(x, y)µ(Tx, Ty) ≤ ψ(µ(x, y)).
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Definition 2.5. [28] Let T : X −→ X and η : X × X −→ R+ be
mappings. Then T is said to be η-admissible if for all x, y ∈ X,

η(x, y) ≥ 1 =⇒ η(Tx, Ty) ≥ 1.

Example 2.6. [28] Let X = (0,∞). Define T : X −→ X and η :
X ×X −→ R+ by

Tx = lnx, for all x, y ∈ X

and

η(x, y) =

{
2, if x ≥ y

0, if x < y.

Then T is η-admissible.

Example 2.7. [28] LetX = R+. Define T : X −→ X and η : X×X −→
R+ by Tx =

√
x, for all x ∈ X, and

η(x, y) =

{
exp (x− y), if x ≥ y

0, if x < y.

Then T is η-admissible.

Let (X,µ) be a metric space and denote the set of all nonempty
compact subsets of X by K(X). For A,B ∈ K(X), the function H :
K(X)×K(X) −→ R+ defined by

H(A,B) =

{
max {supx∈A µ(x,B), supx∈B µ(x,A)} , if it exists

∞, otherwise,

is called Hausdorff metric on K(X) induced by the metric µ, where

µ(x,A) = inf
y∈A

µ(x, y).

Let X be a universal set. A fuzzy set in X is a function with domain
X and values in [0, 1] = I. If A is a fuzzy set in X, then the function
value A(x) is called the grade of membership of x in A. The α-level set
of a fuzzy set A is denoted by [A]α and is defined as follows:

[A]α =

{
{x ∈ X : A(x) > 0}, if α = 0

{x ∈ X : A(x) ≥ α}, if α ∈ (0, 1].

where by M , we mean the closure of the crisp set M . We denote the
family of fuzzy sets in X by IX .

A fuzzy set A in a metric space X is said to be an approximate quan-
tity if and only if [A]α is compact and convex in X and supx∈X A(x) = 1.
We denote the collection of all approximate quantities in X by W (X).
If there exists an α ∈ [0, 1] such that [A]α, [B]α ∈ K(X), then define

Dα(A,B) = H([A]α, [B]α).
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µ∞(A,B) = sup
α
Dα(A,B).

Definition 2.8. Let X be a nonempty set and Y a metric space. A
mapping T : X −→ IY is called fuzzy set-valued map. A fuzzy set-
valued map T is a fuzzy subset of X × Y . The function value T (x)(y)
is called the grade of membership of y in T (x).

Definition 2.9. Let X be a nonempty set and G,T : X −→ IX be
fuzzy set-valued maps. A point u ∈ X is called a fuzzy fixed point of G
if there exists an α ∈ (0, 1] such that u ∈ [Gu]α(u). An element u ∈ X
is known as a common fuzzy fixed point of G and T , if there exists an
α ∈ (0, 1] such that u ∈ [Gu]α(u) ∩ [Tu]α(u).

We represent the set of all fuzzy fixed points of G by Fix(G) and
common fuzzy fixed points of G and T by Fix(G,T ).

Remark 2.10. In (K(X), H), u ∈ X is a fuzzy fixed point of T if and
only if µ(u, [Tu]α) = 0.

Definition 2.11. [12] Let (X,µ) be a metric space. A mapping T :
X −→W (X) is called fuzzy λ-contraction if there exists λ ∈ (0, 1) such
that for all x, y ∈ X,

µ∞(T (x), T (y)) ≤ λµ(x, y).

The following result due to Heilpern [12] is the first metric fixed point
theorem for fuzzy set-valued maps.

Theorem 2.12. [12] Every fuzzy λ-contraction on a complete metric
space has a fuzzy fixed point.

Let Ψ denotes the family of functions ψ : R −→ R satisfying the
following axioms:

(ψ1) limn−→∞
ψn(t)
n < 0 for all t > 0 and n > 0;

(ψ2) ψ(t) < t for all t ≥ 0;
(ψ3) ψ is nondecreasing and upper semi-continuous.

Example 2.13. The function ψ : R −→ R defined by

ψ(t) =

{
t5 − 3, if t < 3√
t− 3, if t > 3.

belongs to Ψ.

Clearly, any function ψ satisfying (ψ1) also posses the property that
limn−→∞ ψn(t) = −∞ for all t ∈ (0,∞).
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3. Main Results

Recall that continuity of a set-valued mapping is usually defined in
terms of lower and upper semi-continuity via the notion of Hausdorff
separation (see, e.g. [31, Chap.1]). We begin this section by initiating
the following concept of continuity of fuzzy set-valued maps.

Definition 3.1. Let (X,µ) be a metric space. A fuzzy set-valued map
T : X −→ IX is said to be α-continuous at u ∈ X with respect to a
mapping α : X −→ (0, 1], if for any sequence {xn}n≥1 in X,

lim
n−→∞

µ(xn, u) = 0 =⇒ lim
n−→∞

H([Txn]α(x), [Tu]α(u)) = 0.

We say that T is α-continuous if it is continuous at each point of X.

Definition 3.1 can be reformulated as follows:
A fuzzy set-valued map T is said to be α-continuous at a point u ∈ X
with respect to a mapping α : X −→ (0, 1], if for every ϵ > 0, there
exists a δ > 0 such that

µ(x, u) < δ =⇒ H([Tx]α(x), [Tu]α(u)) < ϵ.

Example 3.2. Let X = [0,∞) and µ(x, y) = |x − y| for all x, y ∈ X.
Define T : X −→ IX by

T (x)(t) =

{
1
4 , if 0 ≤ t ≤ x+ 5
3
29 , elsewhere.

Let α : X −→ (0, 1] be given by α(x) = 0.2 for all x ∈ X. Then,
[Tx]α(x) = [0, x + 5]. For ϵ > 0, take δ = ϵ

8 , then for all x, y ∈ X,
µ(x, y) < δ implies H([Tx]α(x), [Ty]α(y)) = |x − y < ϵ. Thus, T is
α-continuous on X.

Definition 3.3. Let X be a nonempty set. We say that a pair (G,T )
of fuzzy set-valued maps G,T : X −→ IX is η-admissible with respect
to α, if there exist η : X ×X −→ R+ and α : X −→ (0, 1] such that

(a1) for each x ∈ X and any y ∈ [Gx]α(x) with η(x, y) ≥ 1, we have
η(y, w) ≥ 1 for all w ∈ [Ty]α(y);

(a2) for each x ∈ X and y ∈ [Tx]α(x) with η(x, y) ≥ 1, we have
η(y, w) ≥ 1 for all w ∈ [Gy]α(y).

Recall that a mapping η : X × X −→ R+ is called symmetric if
η(x, y) ≥ 1 implies η(y, x) ≥ 1 for all x, y ∈ X. Similarly, a pair (G,T )
of fuzzy set-valued maps G,T : X −→ IX is said to be symmetric η-
admissible if there exists a symmetric function η : X ×X −→ R+ such
that (G,T ) is η-admissible.
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Definition 3.4. Let (X,µ) be a metric space. A pair (G,T ) of fuzzy
set-valued maps G,T : X −→ IX is called fuzzy η − (ψ,F )-contraction,
if there exist two mappings η : X ×X −→ R+ and α : X −→ (0, 1] with
ψ ∈ Ψ and F ∈ Ω such that for all x, y ∈ X,

F (H([Gx]α(x), [Ty]α(y))) ≤ ψ
(
F
(∐

(x, y)
))

(3.1)

with η(x, y) ≥ 1 and H([Gx]α(x), [Ty]α(y)) > 0, where∐
(x, y) = max

{
µ(x, y), µ(x, [Gx]α(x)), µ(y, [Ty]α(y)),

µ(x, [Ty]α(y)) + µ(y, [Gx]α(x))

1 + µ(x, y)

}
.

(3.2)

Now, we present the main result of this paper as follows.

Theorem 3.5. Let (X,µ) be a complete metric space and G,T : X −→
IX be two fuzzy set-valued maps such that the pair (G,T ) is a fuzzy η−
(ψ,F )-contraction. Assume that the following conditions are satisfied:

(ax1) for each x ∈ X, [Gx]α(x), [Tx]α(x) ∈ K(X);
(ax2) there exist x0 ∈ X and x1 ∈ [Gx0]α(x0) such that η(x0, x1) ≥ 1;
(ax3) (G,T ) is a symmetric η-admissible pair;
(ax4) G and T are α-continuous.

Then G and T have a common fuzzy fixed point in X.

Proof. Let x0 ∈ X and x1 ∈ [Gx0]α(x0) be such that η(x0, x1) ≥ 1. Then,
we consider the following cases:

Case 1: If
∐
(x0, x1) = 0, then, from (3.2), it is easy to see that

x0 = x1 is a common fuzzy fixed point of G and T . So, we presume that∐
(x0, x1) > 0. Then,∐

(x0, x1) =max

{
µ(x0, x1), (x0, [Gx0]α(x0)), µ(x1, [Tx1]α(x1)),

µ(x0, [Tx1]α(x1)) + µ(x1, [Gx0]α(x0))

1 + µ(x0, x1)

}

≤max

{
µ(x0, x1), µ(x1, [Tx1]α(x1)),

µ(x0, [Tx1]α(x1))

1 + µ(x0, x1)

}
≤ max{µ(x0, x1), µ(x1, [Tx1]α(x1))}.

(3.3)

Now, consider the following subcases:

Case 1(i) µ(x1, [Tx1]α(x1)) = 0, that is, x1 ∈ [Tx1]α(x1). Since the pair
(G,T ) is symmetric η-admissible, x1 ∈ [Gx1]α(x1), η(x0, x1) ≥ 1
and by (ax1), we get η(x1, x1) ≥ 1. Now, suppose x1 /∈ [Gx1]α(x1)
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so that µ(x1, [Gx1]α(x1)) > 0. Since (G,T ) is an η − (ψ, F )-
contraction, we have

F (µ(x1, [Gx1]α(x1))) ≤ F (H([Tx1]α(x1), [Gx1]α(x1)))

≤ ψ
(
F
(∐

(x1, x1)
))

< F
(∐

(x1, x1)
)
= F (µ(x1, [Gx1]α(x1))),

a contradiction. It follows that x1 ∈ [Gx1]α(x1), and hence x1 ∈
[Gx1]α(x1) ∩ [Tx1]α(x1).

Case 1(ii) µ(x1, [Tx1]α(x1)) > 0. Since η(x0, x1) ≥ 1 and (G,T ) is an η −
(ψ, F )-contraction, we get

F (µ(x1, [Tx1]α(x1))) (3.4)

≤ F ([Gx0]α(x0), [Tx1]α(x1))

≤ ψ(F
(∐

(x0, x1)
)
)

= ψ
(
F
(
max{µ(x0, x1), µ(x1, [Tx1]α(x1))}

))
. (3.5)

If max{µ(x0, x1), µ(x1, [Tx1]α(x1))} = µ(x1, [Tx1]α(x1)), then

F (µ(x1, [Tx1]α(x1))) ≤ ψ(F (µ(x1, [Tx1]α(x1))))

< F (µ(x1, [Tx1]α(x1))),

is a contradiction. Therefore,

F (µ(x1, [Tx1]α(x1))) ≤ ψ(F (µ(x0, x1))). (3.6)

Since [Tx1]α(x1) ∈ K(X), there exists x2 ∈ [Tx1]α(x1) such that

µ(x1, x2) = µ(x1, [Tx1]α(x1)). (3.7)

Putting (3.7) into (3.6), we have

F (µ(x1, x2)) ≤ ψ(F (µ(x0, x1))). (3.8)

Case 2: If
∐
(x1, x2) = 0, then x1 = x2 is a common fuzzy fixed point

of G and T . Assume that
∐
(x1, x2) > 0. Then,∐

(x1, x2) = max

{
µ(x1, x2), µ(x2, [Gx2]α(x2)), µ(x1, [Tx1]α(x1)),

µ(x1, [Gx2]α(x2)) + µ(x2, [Tx1]α(x1))

1 + µ(x1, x2)

}
≤ max{µ(x1, x2), µ(x2, [Gx2]α(x2))}.

Now, we consider the following subcases:
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Case 2 (i) µ(x2, [Gx2]α(x2)) = 0, that is, x2 ∈ [Gx2]α(x2). Since (G,T ) is a
symmetric η-admissible pair, x2 ∈ [Tx1]α(x1), η(x1, x2) ≥ 1 and
by (ax2), we get η(x2, x2) ≥ 1. Suppose that µ(x2, [Tx2]α(x2)) >
0. Then given that the pair (G,T ) is an η − (ψ,F )-contraction,
we have

F (µ(x2, [Tx2]α(x2))) ≤ F (H([Gx2]α(x2), [Tx2]α(x2)))

≤ ψ(F
(∐

(x2, x2)
)
)

< F (µ(x2, [Tx2]α(x2))),

a contradiction. Thus, x2 ∈ [Tx2]α(x2). It follows that x2 ∈
[Gx2]α(x2) ∩ [Tx2]α(x2).

Case 2(ii) µ(x2, [Gx2]α(x2)) > 0. Since η(x1, x2) ≥ 1 and the pair (G,T ) is
an η − (ψ, F )-contraction, we have

F (µ(x2, [Gx2]α(x2))) (3.9)

≤ F (H([Gx2]α(x2), [Tx1]α(x1)))

≤ ψ(F
(∐

(x2, x1)
)
)

= ψ(F
(
max{µ(x1, x2), µ(x2, [Gx2]α(x2))}

)
). (3.10)

If max{µ(x1, x2), µ(x2, [Gx2]α(x2))} = µ(x2, [Gx2]α(x2)), then

F (µ(x2, [Gx2]α(x2))) ≤ ψ(F (µ(x2, [Gx2]α(x2))))

< F (µ(x2, [Gx2]α(x2)))

yields a contradiction. Therefore,

F (µ(x2, [Gx2]α(x2))) ≤ ψ(F (µ(x1, x2))). (3.11)

Moreover, since [Gx2]α(x2) ∈ K(X), there exists x3 ∈ [Gx2]α(x2) such
that

µ(x2, x3) = µ(x2, [Gx2]α(x2)). (3.12)

Substituting (3.12) in (3.11), gives

F (µ(x2, x3)) ≤ ψ(F (x1, x2)). (3.13)

Combining (3.8) and (3.13), we have F (µ(x2, x3)) ≤ ψ2(F (µ(x0, x1))).
Proceeding recursively, we generate a sequence {xn}n∈N such that x2n+1 ∈
[Gx2n]α(x2n), x2n+2 ∈ [Tx2n+1]α(x2n+1), µ(xn, xn+1) > 0, η(xn, xn+1) ≥
1 for all n ∈ N and

F (µ(xn, xn+1)) ≤ ψn(F (µ(x0, x1))), n ∈ N. (3.14)

Take δn = µ(xn, xn+1). Then, from the above inequality, we get

F (δn) ≤ ψn(F (δ0)) −→ −∞ as n −→ ∞. (3.15)
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Therefore, by (F2), limn−→∞ δn = 0. From (3.15), for all n ∈ N, there
exists ζ ∈ (0, 1) such that

δζn(F (δn)) ≤ δζnψ
n(F (δ0)). (3.16)

As n −→ ∞ in (3.16), we have δζnψn(F (δn)) = 0. Moreover, from (ψ1),

there exists λ > 0 such that λ <
∣∣∣ψn(F (δ0))

n

∣∣∣; from which we have

nδζnλ ≤ nδζn

∣∣∣∣ψn(F (δ0))n

∣∣∣∣ = ∣∣∣δζnψn(F (δ0))∣∣∣ . (3.17)

As n −→ ∞ in (3.17), we get limn−→∞ nδζnλ = 0; that is, limn−→∞ nδζn =
0. It follows that there exists n0 ∈ N such that δn ≤ 1

n
1
ζ
, for all n ≥ n0.

Now, for m,n ∈ N with n < m, we obtain

µ(xn, xm) ≤
m−1∑
i=n

δi ≤
m−1∑
i=n

1

i
1
ζ

≤
∞∑
i=n

1

i
1
ζ

.

By Cauchy root test, it is verifiable that the series
∑∞

i=n
1

i
1
ζ
is convergent;

and hence, {xn}n∈N is a Cauchy sequence in X. The completeness of X
implies that there exists u ∈ X such that xn −→ u as n −→ ∞. Now,
since G and T are α-continuous, then

µ(u, [Gu]α(u)) = lim
n−→∞

µ(x2n+1, [Gu]α(u))

≤ lim
n−→∞

H([Gx2n]α(x2n), [Gu]α(u)) = 0.

It follows that u ∈ [Gu]α(u). Similarly, one can show that µ(u, [Tu]α(u)) =
0. Consequently, u is the expected common fuzzy fixed point of G and
T . □

Corollary 3.6. Let (X,µ) be a complete metric space and G,T : X −→
IX be two fuzzy set-valued maps satisfying the contractive condition:

ξ + F (H([Gx]α(x), [Ty]α(y))) ≤ F
(∐

(x, y)
)

for all x, y ∈ X with H([Gx]α(x), [Ty]α(y)) > 0 where α : X −→ (0, 1] is
a mapping, F ∈ Ω and

∐
(x, y) is given by (3.2). Let η : X ×X −→ R+

be a function and assume that the following conditions hold:

(i) there exists x0 ∈ X and x1 ∈ [Gx0]α(x0) with η(x0, x1) ≥ 1;
(ii) (G,T ) is a symmetric η-admissible pair;
(iii) G and T are α-continuous;
(iv) for each x ∈ X, [Gx]α(x) and [Tx]α(x) are nonempty compact

subsets of X.
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Then, G and T have a common fuzzy fixed point in X.

Proof. Put ψ(t) = t− ξ, ξ > 0 in Theorem 3.5. □

Corollary 3.7. Let (X,µ) be a complete metric space and G,T : X −→
IX be two fuzzy set-valued maps satisfying the contractive condition:

H([Gx]α(x), [Ty]α(y))∐
(x, y)

exp
(
H([Gx]α(x), [Ty]α(y))−

∐
(x, y)

)
≤ exp(−ξ)

(3.18)
for all x, y ∈ X with H([Gx]α(x), [Ty]α(y)) > 0, where α : X −→ (0, 1] is
a mapping, and

∐
(x, y) is given by (3.2). Let η : X ×X −→ R+ be a

function and assume that the following conditions hold:

(i) there exists x0 ∈ X and x1 ∈ [Gx0]α(x0) such that η(x0, x1) ≥ 1;
(ii) (G,T ) is a symmetric η-admissible pair;
(iii) G and T are α-continuous;
(iv) for each x ∈ X, [Gx]α(x) and [Tx]α(x) are nonempty compact

subsets of X.

Then, G and T have a common fuzzy fixed point in X.

Proof. Set F (t) = ln t+ t, t > 0 in Corollary 3.6. □

Corollary 3.8. Let (X,µ) be a complete metric space and G,T : X −→
IX be two fuzzy set-valued maps satisfying the contractive condition:

H([Gx]α(x), [Ty]α(y)) ≤
1(

1 + ξ (
∐
(x, y))

1
2

)2

∐
(x, y),

for all x, y ∈ X with H([Gx]α(x), [Ty]α(y)) > 0, where α : X −→ (0, 1]
is a mapping and

∐
(x, y) is given by (3.2). Assume that conditions (i)-

(iv) of Corollary 3.6 hold. Then, G and T have a common fuzzy fixed
point in X.

Proof. Put F (t) = −1√
t
, t > 0 in Corollary 3.6. □

Corollary 3.9. Let (X,µ) be a complete metric space and G,T : X −→
IX be two fuzzy set-valued maps satisfying the contractive condition:

H([Gx]α(x), [Ty]α(y))
(
1 +H([Gx]α(x), [Ty]α(y))

)∐
(x, y) (1 +

∐
(x, y))

≤ exp(−ξ),

for all x, y ∈ X with H([Gx]α(x), [Ty]α(y)) > 0, where α : X −→ (0, 1]
is a mapping and

∐
(x, y) is given by (3.2). Assume that conditions (i)-

(iv) of Corollary 3.6 hold. Then, G and T have a common fuzzy fixed
point in X.

Proof. Put F (t) = ln(t2 + t), t > 0 in Corollary 3.6. □
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Corollary 3.10. Let (X,µ) be a complete metric space and G,T : X −→
IX be two fuzzy set-valued maps satisfying the contractive condition:

F
(
H([Gx]α(x), [Ty]α(y))

)
≤ ψ(F

(∐
(x, y)

)
)

for all x, y ∈ X with H([Gx]α(x), [Ty]α(y)) > 0, where α : X −→ (0, 1] is
a mapping, ψ ∈ Ψ, F ∈ Ω and

∐
(x, y) is given by (3.2). Assume that

the following axioms hold:

(i) for each x ∈ X, [Gx]α(x) and [Tx]α(x) are nonempty compact
subsets of X;

(ii) G and T are α-continuous.

Then, G and T have a common fuzzy fixed point in X.

Proof. For all x, y ∈ X, put η(x, y) = 1 in Theorem 3.5. □

Corollary 3.11. Let (X,µ) be a complete metric space and G,T : X −→
IX be two fuzzy set-valued maps satisfying the contractive condition:

ξ + F
(
H([Gx]α(x), [Ty]α(y))

)
≤ F

(∐
(x, y)

)
for all x, y ∈ X with H([Gx]α(x), [Ty]α(y)) > 0, where α : X −→ (0, 1]
is a mapping, F ∈ Ω and

∐
(x, y) is given by (3.2). Assume that the

following axioms hold:

(i) for each x ∈ X, [Gx]α(x) and [Tx]α(x) are nonempty compact
subsets of X;

(ii) G and T are α-continuous;

Then, G and T have a common fuzzy fixed point in X.

Proof. Put ψ(t) = t− ξ, ξ > 0 in Corollary 3.10. □

Corollary 3.12. Let (X,µ) be a complete metric space and G,T : X −→
IX be two fuzzy set-valued maps satisfying the contractive condition:

H([Gx]α(x), [Ty]α(y))∐
(x, y)

exp
(
H([Gx]α(x), [Ty]α(y))−

∐
(x, y)

)
≤ exp(−ξ)

for all x, y ∈ X with H([Gx]α(x), [Ty]α(y)) > 0, where α : X −→ (0, 1]
is a mapping and

∐
(x, y) is given by (3.2). Assume that the following

axioms hold:

(i) for each x ∈ X, [Gx]α(x) and [Tx]α(x) are nonempty compact
subsets of X;

(ii) G and T are α-continuous;

Then, G and T have a common fuzzy fixed point in X.

Proof. Set F (t) = ln t+ t, t > 0 in Corollary 3.11. □
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Corollary 3.13. Let (X,µ) be a complete metric space and G : X −→
IX be an α-continuous fuzzy set-valued map. Assume that for x ∈ X,
there exist ζ ∈ (0, 1) and a mapping α : X −→ (0, 1] such that [Gx]α(x)
is a nonempty compact subset of X, and

H([Gx]α(x), [Gy]α(y)) ≤ ζµ(x, y), (3.19)

for all x, y ∈ X with H([Gx]α(x), [Gy]α(y)) > 0. Then, G has a fuzzy
fixed point in X.

Proof. Taking ln on both sides of (3.21), gives

− ln ζ + ln
(
H([Gx]α(x), [Gy]α(y))

)
≤ ln(µ(x, y)) (3.20)

for all x, y ∈ X with µ(x, y) > 0. Setting ξ = − ln ζ and ln t = F (t), t >
0 in (3.20), gives the condition:

H([Gx]α(x), [Gy]α(y)) > 0 =⇒ ξ+F
(
H([Gx]α(x), [Gy]α(y))

)
≤ F (µ(x, y)).

Consequently, all the assumptions of Corollary 3.11 are satisfied with
G = T . Hence, G has at least one fuzzy fixed point in X. □

We provide the following Example 3.14 to support the hypotheses of
Corollary 3.7.

Example 3.14. Let X = {1, 3, 5, 7, 13} and µ(x, y) = |x − y| for all
x, y ∈ X. Then (X,µ) is a complete metric space. Define η : X×X −→
R+ by

η(x, y) =

{
1, if x, y ∈ {3, 5, 13}
0, if x, y ∈ {1, 7}.

For each x ∈ X, consider two fuzzy set-valued maps G(x), T (x) : X −→
[0, 1] defined by

G(x)(t) =


3
8 , if t = 1
2
9 , if t = 3
5
6 , if t ∈ {5, 7, 13},

and

T (x)(t) =


2
3 , if t = 1
7
9 , if t ∈ {5, 7}
0, if t = 13.

Suppose that the mapping α : X −→ (0, 1] is defined as α(x) = 0.5 for
all x ∈ X. Then, we have

[Gx]α(x) = {t ∈ X : G(x)(t) ≥ α(x)}
= {5, 7, 13}.
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Similarly, [Tx]α(x) = {1, 3, 5, 7}. To see that the contraction condition
3.18 hold, let x, y ∈ X with η(x, y) ≥ 1, then x, y ∈ {3, 5, 13}. Consider
the following cases:

Case 1: For x = 3 and y = 13, we have

H([G3]α(3), [T13]α(13)) = H({5, 7, 13}, {1, 3, 5, 7})
= max{6, 4, 2} = 6,

and ∐
(3, 13) = max

{
µ(3, 13), µ(3, [G3]α(3)), µ(13, [T13]α(13)),

µ(3, [T13]α(13)) + µ(13, [G3]α(3))

1 + µ(3, 13)

}
= max{10, 2, 6} = 10.

Hence,

H([G3]α(3), [T13]α(13))∐
(3, 13)

exp
(
H([G3]α(3), [T13]α(13))−

∐
(3, 13)

)
=

3

5
exp(−4) < exp(−4).

Case 2: For x = 13 and y = 3, we have

H([G13]α(13), [T3]α(3)) = H({5, 7, 13}, {1, 3, 5, 7})
= max{6, 4, 2} = 6,

and ∐
(13, 3) = max

{
µ(13, 3), µ(13, [G13]α(13)), µ(3, [T3]α(3)),

µ(13, [T3]α(3)) + µ(3, [G13]α(13))

1 + µ(13, 3)

}

= max

{
10,

8

11

}
= 10.

Therefore,

H([G13]α(13), [T3]α(3))∐
(13, 3)

exp
(
H([G13]α(13), [T3]α(3))−

∐
(13, 3)

)
=

3

5
exp(−4) < exp(−4).
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Case 3: For x = 5 and y = 13, we have

H([G5]α(5), [T13]α(13)) = H({5, 7, 13}, {1, 3, 5, 7})
= max{6, 4, 2} = 6,

and ∐
(5, 13) = max

{
µ(5, 13), µ(5, [G5]α(5)), µ(13, [T13]α(13)),

µ(5, [T13]α(13)) + µ(13, [G5]α(5))

1 + µ(5, 13)

}
= max{8, 6} = 8.

Hence,

H([G5]α(5), [T13]α(13))∐
(5, 13)

exp
(
H([G5]α(5), [T13]α(13))−

∐
(5, 13)

)
=

3

4
exp(−2) < exp(−2).

Case 4: For x = 13 and y = 5, we have

H([G13]α(13), [T5]α(5)) = H({5, 7, 13}, {1, 3, 5, 7})
= max{6, 4, 2} = 6,

and ∐
(13, 5) = max

{
µ(13, 5), µ(13, [G13]α(13)), µ(5, [T5]α(5)),

µ(13, [T5]α(5)) + µ(5, [G13]α(13))

1 + µ(13, 5)

}

= max

{
10,

1

3

}
= 8.

Therefore,

H([G13]α(13), [T5]α(5))∐
(13, 5)

exp
(
H([G13]α(13), [T5]α(5))−

∐
(13, 5)

)
=

3

4
exp(−2) < exp(−2).

Thus, for all x, y ∈ X with H([Gx]α(x), [Ty]α(y)) > 0, there exists ξ ∈
{2, 4} such that the inequality 3.18 is true. Moreover, it is clear that the
pair (G,T ) is symmetric η-admissible. And, for ϵ > 0, we can find a δ >
0 such that for all x, y ∈ X, µ(x, y) < δ implies H([Gx]α(x), [Gy]α(y)) < ϵ
and H([Tx]α(x), [Ty]α(y)) < ϵ, that is G and T are α-continuous. If
we take x0 = 5 and x1 = 13, then x1 ∈ [Gx0]α(x0) and η(x0, x1) =
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η(5, 13) ≥ 1. It is also obvious that G and T are nonempty compact
subsets of X. It follows that all the hypotheses of Corollary 3.7 are
satisfied. Consequently, G and T have a common fuzzy fixed point in
X, given by Fix(G,T ) = {5, 7}.

In what follows, we apply Corollary 3.13 to study fuzzy fixed point
result in connection with µ∞-metric for fuzzy sets. It is noteworthy that
fuzzy fixed point results in the setting of µ∞-metric are very significant
in evaluating Hausdorff dimensions. These dimensions help us to under-
stand the concepts of ε∞-space which is of tremendous importance in
higher energy physics (see, e.g. [9, 10]).

Theorem 3.15. Let (X,µ) be a complete metric space and G : X −→
W (X) be an α-continuous fuzzy set-valued map. Assume that for each
x ∈ X, there exist ζ ∈ (0, 1) and a mapping α : X −→ (0, 1] such that
for all x, y ∈ X,

µ∞(Gx,Gy) ≤ ζµ(x, y), (3.21)

for all x, y ∈ X with H([Gx]α(x), [Gy]α(y)) > 0. Then, G has at least
one fuzzy fixed point in X.

Proof. Since H([Gx]α(x), [Gy]α(y)) ≤ µ∞(Gx,Gy) for all x, y ∈ X, then
Corollary 3.13 can be applied to find u ∈ X such that u ∈ [Gu]α(u). □

The following example shows that Theorem 3.15 cannot be followed
from the main result of Heilpern [12].

Example 3.16. Let X = [0, 1] and µ(x, y) = |x − y|, for all x, y ∈ X.
Then, (X,µ) is a complete metric space. Define a fuzzy set-valued map
G : X −→W (X) by

G(x)(t) =

{
1
2 , if 0 ≤ t ≤ 1

ρ(n+1)3
, n ∈ N, ρ ≥ 2

4
15 , if 1

ρ(n+1)3
< t ≤ 1.

Suppose that α(x) = 0.3 for all x ∈ X. Then, [Gx]α(x) =
[
0, 1

ρ(n+1)3

]
.

Now, for x, y ∈ X with x ̸= y, without loss of generality, take x = 1
n2

and y = 1
m2 with n,m ∈ N (n ̸= m). To see that G is α-continuous,

given ϵ > 0, take δ = ϵ
7 . Then, µ(x, y) < δ implies

µ∞(Gx,Gy) = sup
α
H([Gx]α, [Gy]α)

=

∣∣∣∣ 1

ρ(n+ 1)2
− 1

ρ(m+ 1)2

∣∣∣∣
≤ 1

ρ

∣∣∣∣ 1n2 − 1

m2

∣∣∣∣ < ϵ.
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Hence, G is α-continuous on X. Moreover, for ζ = 1
ρ ∈ (0, 1), we have

µ∞(Gx,Gy) ≤ 1

ρ

∣∣∣∣ 1n2 − 1

m2

∣∣∣∣
= ζµ(x, y).

Also notice that [Gx]α(x) is compact for each x ∈ X. Thus, all the
hypotheses of Theorem 3.15 are satisfied and 0 is a fuzzy fixed point of
G. However, G is not a fuzzy λ-contraction, since

sup
x,y∈X,x̸=y

H([Gx]α(x), [Gy]α(y))

µ(x, y)
= 1.

Consequently, Theorem 2.12 due to Heilpern [12] is not applicable to
this example.

Remark 3.17.

(i) If we consider a multivalued mapping Λ : X −→ K(X) defined
as Λx = [Tx]1 for all x ∈ X, where X is a complete metric space,
then all the results discussed in this section can be reduced to
their corresponding crisp set-valued mappings.

(ii) By taking G = T and define the cut set of T : X −→ IX

by [Tx]α(x) = {g(x)} for all x ∈ X, where g : X −→ X is a
self-mapping, then clearly, {g(x)} ∈ K(X) for all x ∈ X. Conse-
quently, Corollary 3.10 can be applied to deduce the main result
of Wardowski [33].

(iii) It is obvious that when we consider in Definition 3.4, various
types of mappings in Ω, then more independent consequences
of our results can be derived by using the contractive inequality
(3.1). But, we skip obtaining such corollaries due to the length
of the paper.

4. An Application to a System of Integral Inclusions

Integral inclusions arise in several problems in mathematical physics,
control theory, critical point theory for non-smooth energy function-
als, differential variational inequalities, economics, fuzzy set arithmetic,
traffic theory, and in several other macrosystem dynamics. (see, for in-
stance, [2, 4, 8, 11] ). Usually, the first most concerned problem in the
investigation of integral inclusions is the conditions for existence of its
solutions. In this context, several authors have applied different fixed
point approaches and topological methods to obtain existence results of
integral inclusions in abstract spaces, see, for example, Appele et al. [2],
Cardinali and Papageorgiou [8], Kannan and O’Regan [15], Pathak et
al. [25], Sintamarian [30], and the references therein.
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Following the above developments, in this section, we apply one of
the results in the previous section to study some sufficient conditions
for existence of solutions to a system of Fredholm integral inclusions.
For basic concepts of integral and differential inclusions, we refer the
interested reader to Appelle [2] and Smirnov [31].

Hereafter, |.| represents either absolute value or the vector norm in Rn,
which of the two of these being evident from the context. The notation
∥.∥ is used to denote the sup norm in a specified function space.

Theorem 4.1. Consider the system of Fredholm integral inclusions:

x(t) ∈ f(t) +

∫ b

a
K(t, s, x(s))µs, t ∈ [a, b]

x(t) ∈ f(t) +

∫ b

a
L(t, s, x(s))µs, t ∈ [a, b].

(4.1)

Assume that the following conditions hold:

(i) the multivalued K,L : [a, b]× [a, b]×Rn −→ K(X) are such that
for each x ∈ C ([a, b],Rn), the maps Kx(t, s) := K(t, s, x(s)) and
Lx(t, s) := L(t, s, x(s)), (t, s) ∈ [a, b] × [a, b] are lower semicon-
tinuous;

(ii) there exists ξ > 0 and a continuous function ϑ : [a, b] −→ R+

with
supt∈[a,b]

(∫ b
a ϑ(t)dt

)
≤ 1 such that

H(K(t, s, x(s)), L(t, s, x(s))) ≤ ϑ(s)|x(s)− y(s)|

ξ3∥x− y∥+ 3ξ2
(

3
√

∥x− y∥
)2

+ 3ξ 3
√

∥x− y∥+ 1

(4.2)

where x, y ∈ C ([a, b],Rn) and s, t ∈ [a, b]. Then, the system of integral
inclusions (4.1) have a common solution in C ([a, b],Rn).

Proof. Let X = C ([a, b],Rn) and µ : X ×X −→ R+ be defined by

µ(x, y) = sup
t∈[a,b]

(|x(t)− y(t)|) = ∥x− y∥, for all x, y ∈ X.

Then, (X,µ) is a complete metric space. For each x ∈ X, consider two
functions Λx,Θx : [a, b] −→ Rn, respectively defined as Λx = f(t) +∫ b
a K(t, s, x(s))µs and Θx = f(t) +

∫ b
a L(t, s, x(s))µs. Then define two

fuzzy set-valued maps G,T : X −→ IX as:

G(x)(ω) =

{
2
3 , if ω = Λx

0, elsewhere,
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and

T (x)(ω) =

{
4
5 , if ω = Θx

0, elsewhere.

Take α : X −→ (0, 1] as α(x) = 0.5 for all x ∈ X. Then,

[Gx]α(x) = {ω ∈ X : G(x)(ω) ≥ α(x)}

=

{
ω ∈ X : ω(t) = f(t) +

∫ b

a
K(t, s, x(s))µs, t ∈ [a, b]

}
.

Similarly,

[Tx]α(x) =

{
ω ∈ X : ω(t) = f(t) +

∫ b

a
L(t, s, x(s))µs, t ∈ [a, b]

}
.

We are to show that G and T have a common fuzzy fixed point in X, and
that corresponds to a common solution of(4.1) on [a, b]. Now, since the
maps Kx and Lx are lower semicontinuous, then, by Michael’s selection
theorem [18, Theorem 1], it follows that there exist continuous operators
γx, πx : [a, b] × [a, b] −→ R such that γx ∈ Kx(t, s) and πx ∈ Lx(t, s),

for each (t, s) ∈ [a, b] × [a, b]. Therefore, f(t) +
∫ t
a γx(t, s)µs ∈ [Gx]α(x)

and f(t) +
∫ t
a πx(t, s)µs ∈ [Tx]α(x) for each x ∈ X. Hence, [Gx]α(x) and

[Tx]α(x) are nonempty. Let x, y ∈ X and ω ∈ [Gx]α(x). Then, consistent
with [30], we have that there exists πy ∈ Ly(t, s) such that

|γx(t, s)− πy(t, s)| ≤
ϑ(s)|x(s)− y(s)|

ξ3∥x− y∥+ 3ξ2
(

3
√
∥x− y∥

)2
+ 3ξ 3

√
∥x− y∥+ 1

.

Take ϖ = f(t)+
∫ b
a πx(t, s)µs, then ϖ ∈ [Tx]α(x) for each x ∈ X. Hence,

|ω(t)−ϖ(t)| ≤
∣∣∣∣∫ b

a
γx(t, s)µs−

∫ t

a
πy(t, s)µs

∣∣∣∣
≤
∫ b

a
|γx(t, s)− πy(t, s)|µs

≤
∫ b

a

ϑ(s)|x(s)− y(s)|µs

ξ3∥x− y∥+ 3ξ2
(

3
√

∥x− y∥
)2

+ 3ξ 3
√

∥x− y∥+ 1
.

(4.3)

Taking sup over t ∈ [a, b] in (4.3), gives

∥ω −ϖ∥ ≤ µ(x, y)

ξ3µ(x, y) + 3ξ2( 3
√
µ(x, y))2 + 3ξ 3

√
µ(x, y) + 1

. (4.4)
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The expression (4.4) implies that for each x, y ∈ X,

H([Gx]α(x), [Ty]α(y)) ≤
µ(x, y)

ξ3µ(x, y) + 3ξ2( 3
√
µ(x, y))2 + 3ξ 3

√
µ(x, y) + 1

.

Therefore,

3

√
H([Gx]α(x), [Ty]α(y)) ≤

3
√
µ(x, y)

ξ 3
√
µ(x, y) + 1

(4.5)

for all x, y ∈ X with x ̸= y. From (4.5), we have

ξ +
−1

3

√
H([Gx]α(x), [Ty]α(y))

≤ −1
3
√
µ(x, y)

. (4.6)

Setting F (t) = −1
3√t , t > 0 in (4.6), yields

ξ + F
(
H([Gx]α(x), [Ty]α(y))

)
≤ F (µ(x, y))

≤ F
(∐

(x, y)
)
,

for all x, y ∈ X, where
∐
(x, y) is given by (3.2). Hence, all the condi-

tions of Corollary 3.11 are satisfied. Consequently, Problem (4.1) has a
common solution in X. □

Example 4.2. Let K,L : [−1, 30] × [−1, 30] × R −→ K(X) be defined
by

K(t, s, x(s)) =

{[−1
8 , 1

]
, if x(s) ̸= 0, (s, t) ∈ [−1, 5)× [−1, 5)

{0}, if x(s) = 0, (s, t) ∈ [5, 30]× [5, 30].

and

L(t, s, x(s)) =

{[−1
8 , 7

]
, if x(s) ̸= 0, (s, t) ∈ [−1, 5)× [−1, 5)

{0}, if x(s) = 0, (s, t) ∈ [5, 30]× [5, 30].

By taking f(t) = cos t and ϑ(t) = |t|
1+|t| , for all t ∈ [−1, 30], then all

the assumptions of Theorem 4.1 are verifiable. Therefore, there exists a
common solution to the system of Fredholm integral inclusions:

x(t) ∈ cos t+

∫ 30

−1
K(t, s, x(s))µs, t ∈ [−1, 30]

x(t) ∈ cos t+

∫ 30

−1
L(t, s, x(s))µs, t ∈ [−1, 30].
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5. Conclusion

First in this article, a new form of continuity for fuzzy set-valued
maps, α-continuity is inaugurated. Thereafter, we defined the concept
of η-admissibility pair for fuzzy set-valued maps and a generalized quasi-
contraction of Wardowski-type, thereby, establishing a common fuzzy
fixed point theorem under suitable hypotheses. A few consequences of
our main results are pointed out and analyzed. Moreover, as an applica-
tion, an existence theorem for a system of Fredholm integral inclusions
is established. The the idea of this paper, being obtained in the con-
text of metric space, is fundamental. Thus, it can be improved upon
when presented in the setting of some generalized metric spaces such
as b-metric, G-metric, F -metric and other pseudometric or quasi metric
spaces. Similarly, the fuzzy mapping’s component can be extended to
L-fuzzy, intuitionistic, soft set-valued maps and related non-crisp map-
pings.
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