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Abstract. In this paper, singularly perturbed differential equa-
tions having delay on the convection and reaction terms are consid-
ered. The highest order derivative term in the equation is multiplied
by a perturbation parameter ε taking arbitrary values in the inter-
val (0, 1]. For small ε, the problem involves a boundary layer on
the left or right side of the domain depending on the sign of the
coefficient of the convective term. The terms involving the delay
are approximated using Taylor series approximation. The resulting
singularly perturbed boundary value problem is treated using ex-
ponentially fitted upwind finite difference method. The stability of
the proposed scheme is analysed and investigated using maximum
principle and barrier functions for solution bound. The formulated
scheme converges independent of the perturbation parameter with
rate of convergence O(N−1). Richardson extrapolation technique is
applied to accelerate the rate of convergence of the scheme to order
O(N−2). To validate the theoretical finding, three model examples
having boundary layer behaviour are considered. The maximum
absolute error and rate of convergence of the scheme are computed.
The proposed scheme gives accurate and parameter uniformly con-
vergent result.
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1. Introduction

In differential equations the evolution of the system depend on the
present state of the system and the past did not influence the system.
Differential equations play a prominent role in many disciplines includ-
ing engineering, physics, economics, and biology. Currently different
authors are working on analytical and numerical solution of fractional
order differential equations using different techniques. To list few of
them [2], [3, 4], [6], [12, 13, 14, 15, 16, 17, 18],[22], [25, 26], [30].

Differential difference equations or delay differential equations (DDEs)
are differential equations where the evolution of the system does not
only depend on the present state of the system but also depends on the
past history. DDEs are called retarded type if the delay argument does
not occur in the highest order derivative term, otherwise it is known
as neutral type. DDEs arise in the mathematical modeling of various
physical phenomena, for example in micro scale heat transfer [29], fluid
dynamics [8], diffusion in polymers [19], reaction-diffusion equations [5],
a lot of model in diseases or physiological processes [20] etc.

Singularly perturbed differential difference equations are differential
equations in which its highest order derivative is multiplied by a small
perturbation parameter and having delay parameters on the terms dif-
ferent from the highest derivative. The presence of singular perturbation
parameter ε leads to bad approximation or oscillation in the computed
solution while using standard numerical methods [7]. To avoid this os-
cillations unacceptably large number of mesh points are required when
ε is very small. This is not practical and leads to rounding error. So, to
overcome the drawbacks associated with the standard numerical meth-
ods, it is necessary to developed a numerical scheme which converges
independent of the perturbation parameter.

Since developing higher order uniformly convergent numerical scheme
is an active research area. Different authors developed a numerical
scheme which converges independent of the perturbation parameter for
the considered problem. Kadelbajoo and Ramesh in [9] consider the
problem and used Taylor series approximation for the delay terms. The
authors develop uniformly convergent schemes using upwind, midpoint
upwind and hybrid of midpoint upwind and central on piecewise uniform
mesh. Kumar and Kadalbajoo in [11] used Taylor series approximation
for the delay terms and computed the numerical solution using B-spline
collocation method on shishkin mesh. Their scheme converges uniformly
with almost second order rate of convergence. Adilaxmi et.al in [1] first
approximate the problem using Taylor series approximation and solved
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using non standard FDM with exponential fitting factor. In [24] Pha-
neendra and Lula apply the Gaussian quadrature two-point formula for
treating the problem. In this paper, we developed second order uni-
formly convergent numerical scheme using exponentially fitted FDM. In
addition to that we analyse the uniform convergence of the scheme. The
proposed scheme gives accurate and oscillation free solution on uniform
mesh.

2. Statement of the problem

Consider a class of singularly perturbed differential equations having
delay on the convection and reaction terms of the form

−εu′′(x)+a(x)u′(x−δ)+β(x)u(x)+ω(x)u(x−δ) = f(x), x ∈ Ω = (0, 1),
(2.1)

with interval-boundary conditions

u(x) = ϕ(x), x ∈ ΩL = [−δ, 0], u(1) = γ, (2.2)

where ε, (0 < ε ≪ 1) is singular perturbation parameter and δ is delay
parameter satisfying δ < ε. The functions a(x), β(x), ω(x) and f(x) are
assumed to be smooth, bounded and not a function of ε. The values of
ϕ(x) and γ are assumed finite constants. We assume also the coefficients
of non-derivative terms β and ω satisfy

β(x) + ω(x) ≥ q∗ > 0, ∀x ∈ Ω̄

for some constant q∗. This condition ensures that the solution of (2.1)-
(2.2) exhibits boundary layer in the neighborhood of x = 0 or x = 1
depending on the sign of the convective term a(x).

When the delay parameter is zero (i.e.,δ = 0) the problem reduces to
singularly perturbed BVPs, for small ε the problem exhibits boundary
layer depending upon the value of the convective term coefficient a(x).
When a(x) < 0 regular boundary layer appears in the neighbourhood of
x = 0 and a(x) > 0 corresponds to existence of a boundary layer in the
neighbourhood of x = 1. If a(x) change sign, shock layer will appear on
the middle of the domain [31]. The layer is maintained for δ ̸= 0 but
sufficiently small.

Our objective is to developed numerical scheme using exponentially
fitted FDM for treating the problem in (2.1)-(2.2) accurately.
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2.1. Estimate for terms with the delay. For δ < ε, using Taylor’s
series approximation for the terms with the shifts is valid [27]. Accord-
ingly the terms u′(x− δ) and u(x− δ) approximated as

u′(x− δ) ≈u′(x)− δu′′(x) +O(δ2),

u(x− δ) ≈u(x)− δu′(x) +
δ2

2
u′′(x) +O(δ3).

(2.3)

Substituting (2.3) into (2.1) gives a singularly perturbed BVP

− cε(x)u
′′(x) + p(x)u′(x) + q(x)u(x) = f(x), x ∈ Ω = (0, 1), (2.4)

with the boundary conditions

u(0) = ϕ(0), u(1) = γ, (2.5)

where cε(x) = ε + δa(x) − δ2

2 ω(x), p(x) = a(x) − δω(x) and d(x) =
β(x)+ω(x). For small values of ε, (2.4)-(2.5) is asymptotically equivalent
to (2.1)-(2.2).

We assume, 0 < cε(x) ≤ ε− δM1 − δ2M2 = cε, where a(x) ≥ M1 and
ω(x) ≥ 2M2 for M1 and M2 are constants. Let us consider first the case
p(x) ≤ p∗ < 0 which imply occurrence of boundary layer on the left side
of the domain, the other case p(x) ≥ p∗ > 0 imply the occurrence of
boundary layer on the right side of the domain.

The problem obtained by setting cε = 0 in (2.4)-(2.5) is called reduced
problem and given as

p(x)u′0(x)+q(x)u0(x) = f(x), x ∈ Ω,

u0(0) =ϕ(0).
(2.6)

It is a first order initial value problem. For small values of cε the solution
of (2.6) is very close to the solution of (2.4)-(2.5).

Let L be denoted for the differential operator Lz = −cεz
′′(x) +

p(x)z′(x) + q(x)z(x) in equation (2.4)-(2.5).

2.2. Properties of the analytical solution.

Lemma 2.1. (The Maximum Principle) Let z be a sufficiently smooth
function defined on Ω which satisfies z(0) ≥ 0 and z(1) ≥ 0. Then
Lz(x) > 0, ∀x ∈ Ω implies that z(x) ≥ 0, ∀x ∈ Ω̄

Proof. Let x∗ be such that z(x∗) = min(x)∈Ω̄ z(x) and suppose that

z(x∗) < 0. It is clear that x∗ /∈ {0, 1}. Since z(x∗) = min(x)∈Ω̄ z(x)

we have z′(x∗) = 0 and z′′(x∗) ≥ 0 implies that Lz(x∗) < 0 which is
contradiction to the assumption that made above Lz(x∗) > 0, ∀x ∈ Ω.
Therefore z(x) ≥ 0, ∀x ∈ Ω̄. □
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Lemma 2.2. (Stability estimate) Let u(x) be the solution of (2.4)-(2.5).
Then we obtain the bound

|u(x)| ≤ ∥Lu∥
q∗

+max{ϕ(0), γ} (2.7)

where q∗ > 0 is lower bound of q(x).

Proof. By defining barrier functions ϑ±(x) as

ϑ±(x) = ∥Lu∥
q∗ +max{ϕ(0), γ}±u(x). At the boundary points we obtain

ϑ±(0) =
∥Lu∥
q∗

+max{ϕ(0), γ} ± u(0) ≥ 0.

ϑ±(1) =
∥Lu∥
q∗

+max{ϕ(0), γ} ± u(1) ≥ 0.

and on the differential operator

Lϑ±(x) =− cεϑ
′′
±(x) + p(x)ϑ′

±(x) + q(x)ϑ±(x)

=∓ cεu
′′(x)± p(x)u′(x) + q(x)

(∥Lu∥
q∗

+max{ϕ(0), γ} ± u(x)
)

=q(x)
(∥Lu∥

q∗
+max{ϕ(0), γ}

)
± f(x)

≥0, since q∗ > 0 is lower bound of q(x).

which implies Lϑ±(x) ≥ 0. Hence using maximum principle in Lemma
2.1 we obtain ϑ±(x) ≥ 0, ∀x ∈ Ω̄. □

Lemma 2.3. The derivatives of the solution u(x) of the problem in
(2.4)-(2.5) is bounded asu(k)(x) ≤C

(
1 + c−k

ε exp(−p∗x

cε
)
)
, x ∈ Ω̄, for left leyer,u(k)(x) ≤C

(
1 + c−k

ε exp(−p∗(1− x)

cε
)
)
, x ∈ Ω̄, for right layer.

(2.8)

for 0 ≤ k ≤ 4, where p(x) ≥ p∗ > 0 for right boundary layer case and
p(x) ≤ p∗ < 0 for left boundary layer case.

Proof. See on [10] or [21]. □

3. Formulation of Numerical Scheme

The domain Ω̄ = [0, 1] is discretized into N equal number of subin-
tervals each of length h = 1

N . Let Ω̄N = {xi = ih}N0 be the discretized
domain satisfying x0 = 0, xi = ih, i = 1, 2, ..., N − 1 and xN = 1. Using
the theory developed in asymptotic method for solving singularly per-
turbed BVPs. We apply exponentially fitted operator finite difference
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method (FOFDM) for treating numerically the problem in (2.4)-(2.5).
We consider and treat separately the left and the right boundary layer
cases.

1. Left boundary layer problem
In this case, the sign of the coefficient function p(x) is negative and the
boundary layer occurs near x = 0. For left boundary layer problem from
the theory of singular perturbation in [23], the asymptotic solution of
the zeros order approximation for the problem in (2.4)-(2.5) is given as

u(x) =u0(x) +
p(0)

p(x)
(ϕ(0)− u0(0)) exp

(
−
∫ x

0

(p(x)
cε

− q(x)

p(x)

)
dx

)
+O(cε),

(3.1)

where u0 is the solution of the reduced problem. Using Taylors series
approximation for u0(x), p(x) and q(x) centring at xi = ih up to first
order and considering cε → 0, the discretized form of (3.1) becomes

u(ih) = u0(ih) + (ϕ(0)− u0(0)) exp(−p(xi)(iρ)), (3.2)

where ρ = h/cε, h = 1/N . Similarly, we write

u((i+ 1)h) = u0(ih) + (ϕ(0)− u0(0)) exp(−p(xi)(i+ 1)ρ),

u((i− 1)h) = u0(ih) + (ϕ(0)− u0(0)) exp(−p(xi)(i− 1)ρ).
(3.3)

Next, on uniform points Ω̄N = {xi}Ni=0 with h = xi+1 − xi. Let Ui

denote the approximation for u(xi) in discretizing the problem. Using
upwind finite difference we write the numerical scheme as

− cε
Ui−1 − 2Ui + Ui+1

h2
+ p(xi)

Ui+1 − Ui

h
+ q(xi)Ui = f(xi), (3.4)

for i = 1, 2, ..., N − 1.
To handle the effect of the singular perturbation parameter expo-

nentially fitting factor σ1(ρ) is multiplied on the term containing the
singular perturbation parameter as

− cεσ1(ρ)
Ui−1 − 2Ui + Ui+1

h2
+ p(xi)

Ui+1 − Ui

h
+ q(xi)Ui = f(xi). (3.5)

Since h is small, multiplying both sides of (3.5) by h and truncating the
term (f(xi)− q(xi)Ui)h (because f(xi)− q(xi)Ui is bounded) results to

− σ1(ρ)

ρ

(
Ui−1 − 2Ui + Ui+1

)
+ p(xi)

(
Ui+1 − Ui

)
= 0. (3.6)

since ρ = h/cε. Substituting the results in (3.2) and (3.3) into (3.6) and
simplifying the exponential fitting factor is obtained as

σ1(ρ) = ρp(xi)

[
exp(−ρp(xi))− 1

exp(ρp(xi))− 2 + exp(−ρp(xi))

]
. (3.7)
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Hence, the required finite difference scheme becomes

Lh
LUi = f(xi), i = 1, 2, ..., N − 1 (3.8)

with the boundary values U0 = ϕ(0) and UN = γ where

Lh
LUi = −cεσ1(ρ)

Ui−1 − 2Ui + Ui+1

h2
+ p(xi)

Ui+1 − Ui

h
+ q(xi)Ui.

2. Right boundary layer problem
In this case the sign of the coefficient function p(x) is positive and the
boundary layer occurs near x = 1. From [23], the asymptotic solution
of zeros order approximation of the problem in (2.4)-(2.5) is given as

u(x) =u0(x) +
p(1)

p(x)
(γ − u0(1)) exp

(
−
∫ 1

x

(p(x)
cε

− q(x)

p(x)

)
dx

)
+O(cε).

(3.9)

In this case, using the backward difference for first derivative term the
scheme is written as

−cεσ2(ρ)
Ui−1 − 2Ui + Ui+1

h2
+p(xi)

Ui − Ui−1

h
+q(xi)Ui = f(xi). (3.10)

for i = 1, 2, ..., N − 1. Using the same procedure as the left boundary
layer case the exponential fitting factor is obtained as

σ2(ρ) = ρp(xi)

[
1− exp(ρp(xi))

exp(ρp(xi))− 2 + exp(−ρ(p(xi))

]
. (3.11)

The required exponentially fitted finite difference scheme becomes

Lh
RUi = f(xi), i = 1, 2, ..., N − 1 (3.12)

with data on the boundary U0 = ϕ(0) and UN = γ, where

Lh
RUi = −cεσ2(ρ)

Ui−1 − 2Ui + Ui+1

h2
+ p(xi)

Ui − Ui−1

h
+ q(xi)Ui.

3.1. Parameter uniform convergence analysis. Here, we give the
convergence analysis for the right boundary layer case and in similar
manner the left boundary layer case follows. First, we need to prove
the discrete maximum principle for the proposed scheme in (3.8) for
guaranteeing existence of unique discrete solution.

Lemma 3.1 (The Discrete Maximum Principle). Assume that, the mesh
function z(xi) satisfies z(x0) ≥ 0 and z(xN ) ≥ 0. If Lh

Rz(xi) ≥ 0, for
1 ≤ i ≤ N − 1, then z(xi) ≥ 0, for 0 ≤ i ≤ N .
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Proof. Let choose k such that z(xk) = minxi z(xi), 1 ≤ i ≤ N − 1. If
z(xk) ≥ 0, the proof completed. We can see that z(xk+1) − z(xk) ≥ 0
and z(xk) − z(xk−1) ≤ 0. Now from (3.8), we obtain Lh

Rz(xk) < 0,

which contradicts Lh
Rz(xk) ≥ 0 . Hence, the assumption is wrong. We

conclude that z(xi) ≥ 0, ∀i, 0 ≤ i ≤ N . □

Lemma 3.2 (Discrete Stability Estimate). The solution Ui of the dis-
crete scheme in (3.8) satisfy the following bound

|Ui| ≤
∥Lh

RUi∥
q∗

+max{U0, UN}. (3.13)

Proof. Let p =
∥Lh

RUi∥
q∗ + max{U0, UN} and define the barrier function

ϑ±
i by ϑ±

i = p± Ui.
On the boundary points, we obtain

ϑ±
0 = p± U0 =

∥Lh
RUi∥
q∗

+max{U0, UN} ± ϕ(0) ≥ 0.

ϑ±
N = p± UN =

∥Lh
RUi∥
q∗

+max{U0, UN} ± γ ≥ 0.

On the discretized spatial domain xi, 0 < i < N , we obtain

Lh
Rϑ

±
i =− cεσ(ρ)

(p± Ui+1 − 2(p± Ui) + p± Ui−1

h2
)

+ p(xi)
(p± Ui − (p± Ui−1)

h

)
+ q(xi)(p± Ui)

=q(xi)p± Lh
RUi

=q(xi)
(∥Lh

RUi∥
q∗

+max{U0, UN}
)
± f(xi) ≥ 0, since q(xi) ≥ q∗.

By discrete maximum principle in Lemma 3.1, we obtain ϑ±
i ≥ 0, ∀xi ∈

Ω̄N . Hence the required bound is obtained. □

Let us denote the difference operators for approximating the first and
second derivatives as

D−u(xi) =
Ui − Ui−1

h
, D+u(xi) =

Ui+1 − Ui

h
and

D+D−u(xi) =
Ui−1 − Ui + Ui+1

h2

(3.14)

The following theorem gives truncation error bound of the proposed
scheme.
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Theorem 3.3. Let u(xi) and Ui be respectively the exact and approx-
imate solution of (2.4)-(2.5). Then the truncation error satisfies the
following boundwwLh

R(u(xi)−Ui)
ww ≤ CN−1

(
1+c−4

ε max
1≤i≤N−1

exp
(
−p∗(1− xi)

cε

))
. (3.15)

Proof. Let us consider the truncation error defined as

Lhu(xi)− Lh
RUi =− cε

(
u′′(xi)− σ(ρ)D+D−u(xi)

)
+ p(xi)

(
u′(xi)−D−u(xi)

)
,

(3.16)

where cεσ(ρ) = p(xi)N
−1

[ 1−exp(ρp(xi))
exp(ρp(xi))−2+exp(−ρ(p(xi))

]
since ρ = N−1

cε
.

In our assumption cε ≤ h = N−1. By considering N is fixed and taking
the limit for cε → 0, we obtain

lim
cε→0

cεσ(ρ) = lim
cε→0

p(xi)N
−1

[
1− exp(ρp(xi))

exp(ρp(xi))− 2 + exp(−ρ(p(xi))

]
= CN−1.

where C is constant independent of N and cε. Using Taylor’s series
approximation the differences of the derivatives is bounded aswwu′′(xi)−D+D−u(xi)

ww ≤CN−2
wwu(4)(xi)

ww,wwu′(xi)−D−u(xi)
ww ≤CN−1

wwu′′(xi)
ww,

(3.17)

where
wwu(k)(xi)

ww = max0≤i≤N

u(k)(xi), k = 2, 4.
Now using the bounds in (3.17) we write (3.16) aswwLh

R

(
u(xi)− Ui

)ww ≤ CN−3
wwu(4)(xi)

ww+ CN−1
wwu′′(xi)

ww. (3.18)

The aim is to show that the scheme convergence independent of the
perturbation parameter cε. Using the bounds for the derivatives of the
solution in Lemma 2.3, the truncation error in (3.18) is bounded aswwLh

R(u(xi)− Ui)
ww ≤CN−3

(
1 + c−4

ε exp
(
− p∗(1− xi)

cε

))
+ CN−1

(
1 + c−2

ε exp
(
− p∗(1− xi)

cε

))
.

Since c−4
ε ≥ c−2

ε ,wwLh
R(u(xi)−Ui)

ww ≤ CN−1
(
1+c−4

ε max
1≤i≤N−1

exp
(
−p∗(1− xi)

cε

))
. (3.19)

□
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Lemma 3.4. For cε → 0 and for given fixed N , we obtain

lim
cε→0

max
j

exp
(
− p∗xj

cε

)
cmε

=0, m = 1, 2, 3, ...

lim
cε→0

max
j

exp
(
− p∗(1−xj)

cε

)
cmε

=0, m = 1, 2, 3, ...

(3.20)

where xj = jh, h = 1/N,∀j = 1, 2, ..., N − 1.

Proof. See in [28] or [32]. □

Theorem 3.5. Under the hypothesis of boundedness of discrete solu-
tion, the solution of the discrete schemes in (3.8) satisfy the following
parameter uniform bound

sup
0<cε≪1

∥u(xi)− Ui∥ ≤ CN−1. (3.21)

Proof. Substituting the results in Lemma 3.4 into Theorem 3.3 then
applying the discrete maximum principle gives the required bound. □

3.2. Richardson Extrapolation. Here, we apply the Richardson ex-
trapolation technique to accelerate the rate of convergence of the pro-
posed scheme. Richardson Extrapolation is a convergence acceleration
technique which involves combination of two computed approximations
of solution. From (3.21) we have

u(xi)− Ui ≤ CN−1, (3.22)

where u(xi) and Ui are exact and approximate solutions respectively
and C is constant independent of ε and N . Let U2N

i denoted for an
approximate solution on 2N number of mesh points by including the
mid points. From (3.22) we have

u(xi)− Ui ≤ CN−1 +RN , (3.23)

So, this works for any h/2 ̸= 0 gives

u(xi)− U2N
i ≤ CN−1/2 +R2N , (3.24)

where the remainders RN and R2N are order of N−1 and N−2 . Com-
bining (3.23) and (3.24) leads to

u(xi)− (2U2N
i − Ui) ≤ CN−2

which gives that
U ext
i = 2U2N

i − Ui (3.25)

is also an approximate solution. The total truncation error for the ap-
proximate solution in (3.25) becomes

sup
0<cε≪1

∥u(xi)− U ext
i ∥ ≤ CN−2. (3.26)
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4. Examples and Numerical Results

To demonstrate the efficiency of the proposed scheme, we solved two
examples having boundary layer behavior.

Example 4.1. We consider the problem,

εu′′(x) + (1 + x)u′(x− δ) + sin(2x)u(x− δ)− e−xu(x) = sin(2x) + 3e−x

with interval-boundary conditions u(x) = −1, −δ ≤ x < 0 and u(1) = 1.

Example 4.2. We consider the problem,

−εu′′(x) + (1 + x)u′(x− δ)− e−2xu(x− δ) + e−xu(x) = 0

with interval-boundary conditions u(x) = 1, −δ ≤ x < 0 and u(1) = −1.

Example 4.3. We consider the problem,

−εu′′(x) + (1 + x)u′(x− δ)− e−2xu(x− δ) + e−xu(x) = ex−1

with interval-boundary conditions u(x) = 1, −δ ≤ x < 0 and u(1) = −1.

Since the exact solution of the considered problems are not known,
the maximum absolute errors are estimated by using the double mesh
principle [31] and it is defined by

EN
ε = max

0≤i≤N
|UN

i − U2N
i |,

where UN
i stands for the numerical solution of the problem on N number

of mesh points and U2N
i stands for the numerical solution of the problem

on 2N number of mesh points by including the mid-points xi+h/2 into
the mesh numbers. The parameter uniform error estimate is defined as

EN = max
ε

|EN
ε |.

The rate of convergence of the scheme is given by

RN
ε =

log(EN
ε )− log(E2N

ε )

log(2)
.

and the parameter uniform rate of convergence is given as

RN =
log(EN )− log(E2N )

log(2)
.

The maximum absolute error of Example 4.1-4.3 is given in Table
1 - 3 respectively for different values of perturbation parameter ε =
100 → 10−10. As we observe on these tables for each N as ε → 0, the
maximum absolute error becomes stable and uniform, which indicate
that the proposed scheme convergence independent of the perturbation
parameter. In the last two rows of these tables, we observe the parameter
uniform error and the parameter uniform rate of convergence. As one
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observes the scheme have second order uniform rate of convergence.
The results in Table 4 indicates, the maximum absolute error of the
proposed scheme for different values of the delay parameter while keeping
ε = 10−1. In Table 5, we compared the the maximum absolute error of
the proposed scheme with the result given in [9] and [11]. As one see the
results in this table, the proposed scheme gives more accurate result.

In Figure 1, one observe the influence of the delay parameter on the
behaviour of the solution of Example 4.1 and 4.2 respectively on (a)
and (b). From this figure one can observe that for left boundary layer
problem as the values of the delay parameter increases the thickness
of the boundary layer decreases and vis versa for right boundary layer
problem. From Figure 2 one observe that, the problem in Example 4.1
has left boundary layer and Example 4.2 has right boundary layer. As
the perturbation parameter goes small the graphs of the solution forms
strong boundary layer.

Table 1. Example 4.1, maximum absolute error for δ = 0.3ε.

ε ↓ N → 32 64 128 256
100 5.7255e-05 3.5794e-06 2.2370e-07 1.3415e-08
10−01 6.0572e-04 3.7992e-05 2.3750e-06 1.4616e-07
10−02 3.7191e-03 3.8015e-04 2.4258e-05 1.5194e-06
10−03 2.7289e-03 7.2061e-04 2.1252e-04 1.5113e-05
10−04 2.7284e-03 7.0334e-04 1.7716e-04 5.3123e-05
10−05 2.7284e-03 7.0333e-04 1.7718e-04 4.4379e-05
10−06 2.7284e-03 7.0333e-04 1.7718e-04 4.4379e-05
10−07 2.7284e-03 7.0333e-04 1.7718e-04 4.4379e-05
10−08 2.7284e-03 7.0333e-04 1.7718e-04 4.4379e-05
10−09 2.7284e-03 7.0333e-04 1.7718e-04 4.4379e-05
10−10 2.7284e-03 7.0333e-04 1.7718e-04 4.4379e-05

EN 2.7284e-03 7.0333e-04 1.7718e-04 4.4379e-05
RN 1.9558 1.9890 1.9973 -

5. Conclusion

In this paper, singularly perturbed differential equation having small
delay parameter on the convection and reaction terms of the problem is
considered. The solution of the problem have boundary layer on left or
right side of the domain depending on the sign of the convective term.
The analytical properties of the solution is discussed. Uniformly conver-
gent numerical scheme is developed using exponentially fitted upwind
finite difference method. The developed scheme satisfies the discrete
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Table 2. Example 4.2, maximum absolute error for δ = 0.3ε.

ε ↓ N → 32 64 128 256
100 3.2328e-06 2.0210e-07 1.2629e-08 8.2101e-10
10−01 4.9452e-05 3.0937e-06 1.9337e-07 1.2100e-08
10−02 3.6521e-04 2.9106e-05 1.8364e-06 1.1480e-07
10−03 5.5227e-04 9.5288e-05 1.7674e-05 1.1326e-06
10−04 5.5397e-04 1.4140e-04 3.4324e-05 5.3005e-06
10−05 5.5398e-04 1.4140e-04 3.5532e-05 8.8936e-06
10−06 5.5398e-04 1.4140e-04 3.5532e-05 8.8944e-06
10−07 5.5398e-04 1.4140e-04 3.5532e-05 8.8944e-06
10−08 5.5398e-04 1.4140e-04 3.5532e-05 8.8944e-06
10−09 5.5398e-04 1.4140e-04 3.5532e-05 8.8944e-06
10−10 5.5398e-04 1.4140e-04 3.5532e-05 8.8944e-06

EN 5.5398e-04 1.4140e-04 3.5532e-05 8.8944e-06
RN 1.9701 1.9926 1.9981 -

Table 3. Example 4.3, maximum absolute error for δ = 0.3ε.

ε ↓ N → 32 64 128 256
100 3.5812e-06 2.2390e-07 1.3994e-08 8.9445e-10
10−01 5.1145e-05 3.2051e-06 2.0037e-07 1.2537e-08
10−02 3.1057e-04 2.8811e-05 1.8087e-06 1.1308e-07
10−03 5.5106e-04 9.4857e-05 1.6853e-05 1.1171e-06
10−04 5.5304e-04 1.4116e-04 3.4252e-05 4.1609e-06
10−05 5.5307e-04 1.4117e-04 3.5473e-05 8.8789e-06
10−06 5.5307e-04 1.4117e-04 3.5473e-05 8.8797e-06
10−07 5.5307e-04 1.4117e-04 3.5473e-05 8.8797e-06
10−08 5.5307e-04 1.4117e-04 3.5473e-05 8.8797e-06
10−09 5.5307e-04 1.4117e-04 3.5473e-05 8.8797e-06
10−10 5.5307e-04 1.4117e-04 3.5473e-05 8.8797e-06

EN 5.5398e-04 1.4140e-04 3.5532e-05 8.8797e-06
RN 1.9701 1.9926 2.0005 -

maximum principle and uniform stability estimate. The stability and
the parameter uniform convergence of the scheme theoretically investi-
gated. The scheme converges independent of the perturbation parame-
ter with order of convergence one. Richardson extrapolation technique is
applied to accelerate the rate of convergence of the scheme to order two.
Three test examples having boundary layers are considered to validate
the theoretical finding. The results in the tables and figures indicate the
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Table 4. Maximum absolute error for different valued of delay
parameters for ε = 0.1.

δ ↓ N → 32 64 128 256
Example 4.1

δ = 0 2.0687e-04 1.2942e-05 8.0876e-07 5.4466e-08
δ = 0.1ε 2.5964e-04 1.6268e-05 1.0167e-06 6.2153e-08
δ = 0.2ε 3.3324e-04 1.6268e-05 1.3035e-06 7.6211e-08
δ = 0.3ε 4.3724e-04 2.7498e-05 1.7188e-06 1.1024e-07
δ = 0.4ε 6.0572e-04 3.7992e-05 2.3750e-06 1.4616e-07

Example 4.2
δ = 0 1.1432e-04 7.2280e-06 4.5181e-07 2.8239e-08
δ = 0.1ε 8.2408e-05 5.1686e-06 3.2307e-07 2.0188e-08
δ = 0.2ε 6.2556e-05 3.9144e-06 2.4473e-07 1.5301e-08
δ = 0.3ε 4.9452e-05 3.0937e-06 1.9337e-07 1.2100e-08
δ = 0.4ε 4.0353e-05 2.5242e-06 1.5777e-07 9.8743e-09

Example 4.3
δ = 0 1.2643e-04 7.9552e-06 4.9737e-07 3.1085e-08
δ = 0.1ε 8.9042e-05 5.5739e-06 3.4843e-07 2.1773e-08
δ = 0.2ε 6.6088e-05 4.1379e-06 2.5866e-07 1.6171e-08
δ = 0.3ε 5.1145e-05 3.2051e-06 2.0037e-07 1.2537e-08
δ = 0.4ε 4.0912e-05 2.5653e-06 1.6034e-07 1.0038e-08

Table 5. Comparison of maximum absolute error

ε Prop Scheme Result in [9] Result in [11]
↓ N → 64 128 N → 64 128 N → 64 128

Example 4.2
2−4 4.8333e-06 3.0224e-07 2.15e-3 5.20e-4 2.79e-03 6.94e-04
2−8 7.2180e-05 4.6372e-06 5.17e-3 2.73e-3 1.26e-02 4.23e-03
2−12 1.4103e-04 2.4279e-05 2.00e-3 8.60e-4 1.25e-02 4.25e-03
2−16 1.4140e-04 3.5532e-05 1.61e-3 4.81e-4 1.25e-02 4.17e-03
2−20 1.4140e-04 3.5532e-05 1.59e-3 4.55e-4 1.25e-02 4.18e-03
2−24 1.4140e-04 3.5532e-05 1.59e-3 4.54e-4 1.25e-02 4.18e-03

Example 4.3
2−4 4.8921e-06 3.0588e-07 2.90e-3 9.41e-4
2−8 6.8712e-05 4.5914e-06 6.55e-3 3.40e-3
2−12 1.4077e-04 2.4181e-05 4.14e-3 1.99e-3
2−16 1.4117e-04 3.5473e-05 3.84e-3 1.68e-3
2−20 1.4117e-04 3.5473e-05 3.82e-3 1.66e-3
2−24 1.4117e-04 3.5473e-05 3.82e-3 1.66e-3
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Figure 1. Effect of delay on the solution for ε = 0.1 (a) Example
4.1, (b) Example 4.2.
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Figure 2. Effect of ε on the solution showing boundary layer
formation (a) Example 4.1, (b) Example 4.2.

parameter uniform convergence of the scheme with rate of convergence
two.
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