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Abstract. The manuscript deals of the fractional optimal control
problems (FOCPs) based on the Caputo fractional derivative by
the ritz method. To use this method, we transform the FOCPs into
an optimization problem and obtain the system of nonlinear alge-
braic equations. By polynomial basis functions, we approximate
solutions. Then we have the coefficients of polynomial expansions
by solving the system of nonlinear equations. numerical examples
are presented which illustrate the performance of the method.
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1. Introduction

In dynamical systems, Optimal control theory allows us to choose con-
trol functions to attain a certain result. The theory generalizes that
of the classical calculus of variations and has found many applications
in engineering, physics, economics, and life sciences [10, 24]. In 1990
decade , motivated by nonconservative physical processes in mechanics,
the subject was extended to the case in which derivatives and integrals
are understood as fractional operators of arbitrary order[5]. Fractional
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optimal control is nowadays an important research area, allowing to ap-
ply the power of variational methods to real systems [7]. The modeling
of many phenomenons leads to a set of fractional differential equations.
Also, fractional calculs appear in several problems in engineering and
science such as, bioengineering [25], viscoelasticity [8, 9], dynamics of
interfaces among nanoparticles and substrates [13], etc. Interested re-
searcher in fractional differential equations and fractional calculus can
study [14, 21, 19]. When the fractional differential equations are used
in conjunction with the performance index and a set of initial condi-
tions, they direct to FOCPs [1]. Nowadays FOCPs is an important
research area, allowing to use the power of variational methods to real
systems [6, 7]. Riemann—Liouville and Caputo fractional derivatives are
the most important types of fractional derivatives but a FOCP can be
defined with respect to different definitions of fractional derivative. For
FOCPs, general necessary conditions of optimality have been developed.
In [2], Hamiltonian formulas for FOCPs with the Riemann–Liouville
fractional derivative considered. In [4], such formulas are achieved for
FOCPs with the Caputo fractional derivative. the Hamiltonian system
of equations provides necessary conditions of optimization. For find the
optimal solution of a FOCP, the Hamiltonian system can be solved be-
cause an optimal solution of the FOCP should satisfy the system [2, 4].
In the Hamiltonian system of equations there exist both right and left
fractional differential operators which makes it so hard to find exact
solution for the system. In [11, 27, 28], there exist some numerical simu-
lations for FOCPs with Riemann-–Liouville fractional derivatives. Also,
there exist numerical simulations for FOCPs with the Caputo fractional
derivative such as [4, 3], where the researcher by solving the Hamilton-
ian equations approximately has solved the problem . A linear quadratic
FOCP is solved directly without using Hamiltonian formulas [23]. In this
article, we consider a class of optimal control problems with the Caputo
fractional derivative in a dynamical system. The numerical approach
developed and applied to solve different classes of FOCPs are generally
based on two major approaches: an approximate solution of the Pon-
tryagin’s system of equations or a direct approximation of the FOCP
without need to necessary conditions of optimality. The approachs based
on the first solution are called indirect methods, whereas the methods
of second approach are categorized as direct methods. Examples of in-
direct methods can be found in [1, 3]. The Ritz approximation is one
of the most widely used direct methods for solving variational problems
approximately. The idea consists of reducing the problem of searching
for the extremum of a functional in the function space to the problem
of optimizing a real–valued multivariate function [15]. The Ritz direct
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method is based on the approximation of unknown functions by a linear
combination of iofinite basis functns. In the Ritz method, various types
of basis functions can be used. In [16, 18], respectively, Walsh and Haar
wavelets are used as basis functions. Despite the wide range of appli-
cability of the Ritz method, its practical application is often limited by
the so–called “curse of dimensionality”[20]. Accordingly, the number
of basis functions should be huge to give an acceptable numerical and
approximate solutions for the problem.
The manuscript is arranged as follows: section 2, defines ritz approxi-
mation for the FOCPs. In section 3, the proposed technique is utilized
for some examples. Finally, section 4 concludes the paper.

2. Solution of The Fractional Optimal Control Problem

In this article, we consider the fractional optimal control problems in
the following. Let 0 < α < n and let H, g: [b,+∞[ × R2 → R be two
differentiable functions. Consider the following FOCP:

minimizeI(y, u, T ) =

1∫
0

H(t, y(t), u(t))dt, (2.1)

subject to the dynamic system

KDα
t y(t) = g(t, y(t), u(t)), (2.2)

where the initial conditions are as follows:

y(0) = y0, y
′(0) = y1, (2.3)

where K, ya are fixed real numbers. fractional derivatives are taken in
the Caputo sense that defind[12]

Dαy(t) =
1

Γ(n− α)

∫ t

0

y(n)(τ)

(t− τ)−n+α+1
dτ

The method consists of conversion fractional optimal control problem to
optimization problem and expanding the solution by polynomial basis
functions with unknown coefficients.

We approximate y(t) as

y(t) ∼= ym(t) =
l∑

i=0

ait
2ψi(t) + w(t), (2.4)

and u(t) obtain of Eq. (2.2). where ψi(t) are polynomial basis functions
and ai are unknown coefficients. In following, we determine w(t) as
w(0) = y0 and w′(0) = y1.
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Now we have the following optimal problem

I[a0, a1, ..., al] =

1∫
0

H(t, ỹ(t), ũ(t))dt, (2.5)

If aiare decided by the optimizing function I, then by (2.4), we obtain
functions which approximate the optimum value of I in (2.5). To find
unknowns ai, i = 0, 1, ..., l in ỹ(t), according to the necessary conditions
of optimization for (2.5), we have

∂I

∂ai
= 0, i = 0, ..., l. (2.6)

Then by solving the above system of l algebraic equations (2.6), we
obtain ai, i = 0, 1, ..., l. The approached demonstrated here relies on the
Ritz method. Then with solving this problem by mathematica software,
we obtain ai. The method presented here is based on the Ritz method.
For more study, we refer the interested researcher to [14].

3. Illustrative examples

To demonstrate the effectiveness of the method, here we consider frac-
tional optimal control problems. The following examples demonstrate
that the desired approximate solution can be determined by solving the
resulting system of equations, which can be effectively computed using
symbolic computing codes on any personal computer. Illustrative ex-
ample show that this method in comparison to other methods has high
accuracy and is easily implemented.

Example 3.1. Consider the nonlinear FOCP[26]

min I(y, u) =
∫ 1
0

(
et
(
−t4 + y(t) + t− 1

)2
+(

t2 + 1
) (

−10.9209t21/10 + t4 + u(t)− t+ 1
)2)

dt,
(3.1)

subject to the dynamical system

D1.9y(t) = u(t) + y(t), (3.2)

with initial conditions: y(0) = 1, y′(0) = −1.
The state and control functions that minimize the performance index I
are given by

y(t) = 1− t+ t4,

u(t) = −1 + t− t4 + 8000
77Γ( 1

10
)
t
21
10 , (3.3)
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that are exact solutions and optimal value is Iopt = 0. We used the Ritz
approximation that in section 2 explained. In first, we determine

yl(t) =
l∑

i=0

ait
i+2 + 1− t+ t2. (3.4)

By solved system (2.6) with different value of l, we obtain

a0 = −1, a1 = −2.62× 10−6, a2 = 1, a3 = 0, a4 = 9.82× 10−6, a5 = 2.75× 10−6.

To replace this coefficients in (3.4), we obtain

y5(t) = −2.753× 10−6t7 + 9.825× 10−6t6 − 0.00001t5 + 1.00001t4 − 2.629× 10−6t3

+ 2.897× 10−7t2 − t+ 1 + ... ∼= t4 − t+ 1,

Which obviously converges to the the exact solution.
By applying our method with different values of l, we obtain the numer-
ical results. Fig. 1 shows the absolute error of this problem obtained
by the present method with l = 5. From Fig. 1, we can see that the
present method provides accurate results.

0.2 0.4 0.6 0.8 1.0
t

-5.×10-10

5.×10-10

1.×10-9

1.5×10-9

2.×10-9
y(t)

Fig.1. The absolute error between exact and numerical solution for
l = 5.

The following table shows the values of minimum I for different values
of approximations.

l = 1 l = 3 l = 5
I 0.720698 1.92134× 10−12 1.89784× 10−12

Example 3.2. Consider the nonlinear FOCP[17]

min I(x, u) =

∫ 1

0

(
y(t)− t2

)2
+

(
u(t) + t4 − 2t

9
10

Γ(3− α)

)2

dt, (3.5)

subject to the dynamical system

Dαy(t) = u(t) + t2y(t), (3.6)
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with initial conditions: y(0) = 0, y′(0) = 0.
In this example 0 < α < 2 and the minimizing solutions for the state and

control variables are the functions: y(t) = t2 and u(t) = 2t
9
10

Γ(3−α) − t4

respectively.The performance index I has the minimum value of 0. We
used the Ritz approximation that in section 2 explained. In first, we
determine

yl(t) =
l∑

i=0

ait
i+2, (3.7)

By solved system (2.6) with value of l = 7 and α = 1.1, we obtain

a0 = 1, a1 = −1.30508× 10−8, a2 = 7.8926× 10−8,

a3 = −2.47662× 10−8, a4 = 4.39582× 10−7, a5 = −4.45345× 10−7,

a6 = 2.40267× 10−7, a7 = −5.35796× 10−8.

To replace this coefficients in (3.15), we obtain

y7(t) = t2 − 4.2443× 10−12t3 + 1.5333× 10−11t4 − 2.565× 10−11t5

+ 2.0201× 10−11t6 − 6.0668× 10−12t7,

Which obviously converges to the the exact solution. If we choose other
α, we will achieve the same result.

Example 3.3. Consider the following nonlinear problem[22]

min I(y, u) =

∫ 1

0

[
(y(t)− t

5
2 )4 + (1 + t2)(u(t) + t6 − 15

√
πt

8
)2
]
dt,

(3.8)
subject to the dynamical system

D1.5y(t) = u(t) + ty2(t), (3.9)

with initial conditions: y(0) = 0, y′(0) = 0.
The state function that minimize the performance index I are given by

y(t) = t
5
2 , (3.10)

that are exact solutions and optimal value is Iopt = 0. We used the Ritz
approximation that in section 2 explained. In first, we determine

yl(t) =
l∑

i=0

ait
i+2, (3.11)

By solved system (2.6) with different value of l, we obtain ai. For
example, with l = 5, we have

a0 = 0.175537, a1 = 1.70658, a2 = −2.08146, a3 = 2.14001,

a4 = −1.23854, a5 = 0.298111.



330 Mohammad Arab Firoozjaee

To replace this coefficients in (3.15), we obtain

y5(t) = 0.175537t2 + 1.70658t3 − 2.08146t4 + 2.14001t5

− 1.23854t6 + 0.298111t7,

By applying our method with different values of l, we obtain the numer-
ical results. Fig. 2 shows the absolute error of this problem obtained
by the present method with l = 5. From Fig. 2, we can see that the
present method provides accurate results.

0.2 0.4 0.6 0.8 1.0
t

0.00005

0.00010

0.00015

0.00020

0.00025

y(t)

Fig.2. The absolute error between exact and numerical solution for
l = 5.

The following table shows the values of minimum I for different values
of approximations.

l = 1 l = 3 l = 5
I 0.00326428 0.0000777 7.85652× 10−6

Example 3.4. Consider the nonlinear FOCP[17]

min I(x, u) =
1

2

∫ 1

0

(
3y2(t)− u2(t)

)
dt, (3.12)

subject to the dynamical system

1

4
y′(t) +

3

4
Dαy(t) = y(t)− u(t), (3.13)

with initial conditions: y(0) = 1, y′(0) = 4e2

3+e4
.

For α = 1, state functions that minimize the performance index I are
given by

y(t) = 3
3+e4

e2t + e4

3+e4
e−2t,

u(t) = 3e4

3+e4
e−2t − 3e4

3+e4
e2t,

(3.14)
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that are exact solutions and optimal value is Iopt = 1.39583. We used the
Ritz approximation that in section 2 explained. In first, we determine

yl(t) =

l∑
i=0

aiψi(t)t
2 + (1− t2) +

4e2

3 + e4
t, (3.15)

that ψi(t) are legendre polynomials. By solved system (2.6) with dif-
ferent value of l, we obtain ai. To replace coefficients in (3.15), we
obtain approximation solution. By applying our method with different
values of l, we obtain the numerical results. Fig. 3 shows the absolute
error of this problem obtained by the present method with l = 13 and
α = 1. From Fig. 3, we can see that the present method provides accu-
rate results. In Fig. (4), we represent the numerical solutions of y(t) for
α = 0.5, 0.7, 0.9, 1 with l = 3 in comparison with the exact solutions.

0.2 0.4 0.6 0.8 1.0
t

0.002

0.004

0.006

0.008

0.010

0.012

0.014

y(t)

Fig.3. The absolute error between exact and numerical solution for
l = 13.
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*
*
*

0.0 0.2 0.4 0.6 0.8 1.0
t0.0

0.5

1.0

1.5

y(t)

— α=1

*** α=0.5
 α=0.7

○○○ α=0.9

Fig.4. Approximate solution for α = 0.5, 0.7, 0.9 with l = 3 and Exact
solution(—).
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The following table shows the values of minimum I for different values of
approximations. This table shows that the values obtained by increasing
l to the optimal value is convergent.

l = 7 l = 10 l = 13
I 1.42941 1.41452 1.40773

4. Conclusion

In this manuscript, we apply an effective and simple technique for
solving a wide class of the FOCPs. The present approximate solutions
can be determined by using solving the resulting system of equations,
which can be effectively computed using symbolic computing codes. This
method can also be used to other FOCPs. To represent that this tech-
nique has high performance and is easily implemented, we have solved
some illustrative examples.
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