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Abstract. We study Jacobsthal and Jacobsthal-Lucas general-
ized octonions over the algebra O(a, b, c) where a, b and c are real
numbers. We present Binet formulas for these types of octonions.
Furthermore, we give some well-known identities such as Catalan’s,
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cobsthal and Jacobsthal-Lucas generalized octonions.

Keywords: Generalized octonion, Jacobsthal octonion, Jacobsthal-
Lucas octonion.

2000 Mathematics subject classification: 11B39; Secondary 11R52.

1. Introduction

Some special number sequences are of great importance in many areas of
mathematics such as combinatorics, computer algorithms, and biological
setting. Fibonacci,Lucas, Pell and Jacobsthal sequences are at the top of
this large number sequences. Many researchers related to these series of
numbers have made great contributions to this field with many studies.
Before examining these studies, we take a look at the quaternions that
form the basis of the number sequence we mentioned above.
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For arbitrary real constants a and b, the generalized quaternion alge-
bra is H(a, b) with the basis {1, e1, e2, e3}. The multiplication table for
the basis of H(a, b) can be given as follows:

· 1 e1 e2 e3

1 1 e1 e2 e3
e1 e1 −a e3 −ae2
e2 e2 −e3 −b be1
e3 e3 ae2 −be1 −ab

For a = b = 1, H(1, 1) is the quaternion division algebra, for a =
1, b = −1, H(1,−1) is the algebra of split-quaternions or also called
coquaternions, para-quaternions, anti-quaternions, pseudo-quaternions
or hyperbolic quaternions.

The octonions constitute the largest normed division algebra over the
real numbers and it is shown with the letter O. The octonions have
eight dimensions and they are alternative, flexible, power-associative,
non-commutative and non-associative.

Let O(a, b, c) be the generalized octonion algebra over the R with the
basis {e0, e1, e2, e3, e4, e5, e6, e7}. The multiplication table for the basis
of O(a, b, c) is given as follows:

· e0 e1 e2 e3 e4 e5 e6 e7

e0 e0 e1 e2 e3 e4 e5 e6 e7
e1 e1 −a e3 −ae2 e5 −ae4 −e7 ae6
e2 e2 −e3 −b be1 e6 e7 −be4 −be5
e3 e3 ae2 −be1 −ab e7 −ae6 be5 −abe4
e4 e4 −e5 −e6 −e7 −c ce1 ce2 ce3
e5 e5 ae4 −e7 ae6 −ce1 −ac −ce3 ace2
e6 e6 e7 be4 −be5 −ce2 ce3 −bc −bce1
e7 e7 −ae6 be5 abe4 −ce3 −ace2 bce1 −abc

If α ∈ O(a, b, c), then we can write α = α0 + α1e1 + α2e2 + α3e3 +
α4e4+α5e5+α6e6+α7e7. The conjugate of α is α = α0−α1e1−α2e2−
α3e3 − α4e4 − α5e5 − α6e6 − α7e7. The trace and the norm of α are,
respectively

t(α) = α+ α = 2α0

and

N(α) = αα = α2
0 + aα2

1 + bα2
2 + abα2

3 + cα2
4 + acα2

5 + bcα2
6 + abcα2

7.
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Jacobsthal and Jacobsthal-Lucas numbers which are famous integer
sequences satisfy the same recurrence relation except for initial condi-
tions. Namely, Jacobsthal numbers satisfy the recurrence relation

Jn = Jn−1 + 2Jn−2

with the initial conditions J0 = 0 and J1 = 1. Similarly, Jacobsthal-
Lucas numbers satisfy the recurrence relation

JLn = JLn−1 + 2JLn−2

with the initial conditions JL0 = 2 and JL1 = 1.
Generating functions for the Jacobsthal sequence {Jn}∞n=0 and Jacobsthal-

Lucas sequence {JLn}∞n=0 are

∞∑
n=0

Jnx
n =

x

1− x− 2x2
and

∞∑
n=0

JLnx
n =

2− x

1− x− 2x2

respectively. The Binet formulas for the Jacobsthal and Jacobsthal-
Lucas numbers are

Jn =
µn − υn

µ− υ

and

JLn = µn + υn

where µ = 2 and υ = −1 are solutions of the characteristic equation of
x2 − x− 2 = 0.

Horadam [4] defined Fibonacci and Lucas Quaternions as

Qn = Fn + Fn+1e1 + Fn+2e2 + Fn+3e3

and

Pn = Ln + Ln+1e1 + Ln+2e2 + Ln+3e3

respectively, where Fn is the nth Fibonacci number and Ln is the nth
Lucas number.

Many researchers worked on these quaternions (for example [3, 5,
7]). Some authors studied on generalizations of Fibonacci and Lucas
Quaternions (for example [1, 6, 10, 12]).

Kecilioglu and Akkus [8] defined the Fibonacci and Lucas octonions
as

Qn =

7∑
s=0

Fn+ses and Tn =

7∑
s=0

Ln+ses

where Fn and Ln are nth Fibonacci and Lucas numbers. They gave gen-
erating function, Binet formulas, and some identities for the Fibonacci
and Lucas octonions. Also, they defined Split Fibonacci and Lucas oc-
tonions similarly in [2]. Savin [11] studied generalized Fibonacci and
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Lucas octonions over the octonion algebras OR(a + 1, 2a + 1, 3a + 1)
where a is a real number and gave several basic properties for them.

Szynal-Liana and Wloch [13] introduced Jacobsthal quaternion JQn

and Jacobsthal-Lucas quaternion JLQn and defined these quaternions
as

JQn = Jn + Jn+1e1 + Jn+2e2 + Jn+3e3

and

JLQn = jn + jn+1e1 + jn+2e2 + jn+3e3

where Jn is the nth Jacobsthal number and jn is the nth Jacobsthal-
Lucas number.

Aydin and Yüce [14] investigated some properties of the Jacobsthal
and Jacobsthal-Lucas quaternions. In [16], Tasci defined k-Jacobsthal
and k-Jacobsthal-Lucas quaternions. Yasarsoy et. al. [17] introduced
a new class of octonions of Jacobsthal and Jacobsthal-Lucas sequences.
Furthermore, Aydin [15] gave the generalized Jacobsthal and generalized
complex Jacobsthal and generalized dual Jacobsthal sequences.

Cimen and İpek [18] defined the nth Jacobsthal octonion and Jacob-
sthal Lucas octonion numbers, respectively, by the following recurrence
relations;

Ĵn =

7∑
s=0

Jn+ses

and

ĵn =
7∑

s=0

jn+ses.

where Jn and jn are the nth Jacobsthal and Jacobsthal-Lucas numbers.
In this paper, following Horadam, Kecilioglu and Akkus, and Cimen

and İpek, we define the Jacobsthal and Jacobsthal-Lucas generalized
octonions over the octonion algebra O(a, b, c). The nth Jacobsthal gen-
eralized octonion JGOn is

JGOn =

7∑
s=0

Jn+ses

and the nth Jacobsthal-Lucas generalized octonion JLGOn is

JLGOn =
7∑

s=0

JLn+ses.

where Jn is the nth Jacobsthal number and JLn is the nth Jacobsthal-
Lucas number.
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2. Binet Formulas and Generalizations for Some Identities

There are three well-known identities for Jacobsthal and Jacobsthal-
Lucas numbers, namely, Catalan’s, Cassini’s, and d’Ocagne’s identities.
The proofs of these identities are based on Binet formulas. We can obtain
these types of identities for Jacobsthal and Jacobsthal-Lucas generalized
octonions using the Binet formulas. The following theorem gives Binet
formulas for the Jacobsthal and Jacobsthal-Lucas generalized octonions.

Theorem 2.1. For any integer n, nth Jacobsthal generalized octonion
is

JGOn =
µ∗µn − υ∗υn

µ− υ
(2.1)

and nth Jacobsthal-Lucas generalized octonion is

JLGOn = µ∗µn + υ∗υn (2.2)

where µ = 2, υ = −1, µ∗ =
7∑

s=0
µses and υ∗ =

7∑
s=0

υses.

Proof. Let us consider the following for eq. (2.1)

µJGOn + JGOn−1 =

7∑
s=0

(µJn+s + Jn+s−1) es.

By the help of the identity µJn + µnJn−1, we get

µJGOn + JGOn−1 = µ∗µn. (2.3)

Similarly, using the identity υn = υJn + Jn−1, we have

υJGOn + JGOn−1 = υ∗υn. (2.4)

From the eqs. (2.3) and (2.4) , we obtain

JGOn =
µ∗µn − υ∗υn

µ− υ
.

By using similar method, we get Binet formula of Jacobsthal-Lucas gen-
eralized octonion JLGOn. □

When using the Binet formulas to obtain identities for the Jacobsthal
and Jacobsthal-Lucas generalized octonions, we require µ∗2, υ∗2, µ∗υ∗

and υ∗µ∗. These identities play important roles in this paper for calcu-
lations.

Lemma 2.2. We have the following

µ∗2 = w1 + JLGO0 + 3 (w2 + JGO0) , (2.5)

υ∗2 = w1 + JLGO0 − 3 (w2 + JGO0) , (2.6)

µ∗υ∗ = E + JLGO0 + 6F, (2.7)

υ∗µ∗ = E + JLGO0 − 6F. (2.8)
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where

w1 = −1− 5

2
a− 17

2
b− 65

2
ab− 257

2
c

−1025

2
ac− 4097

2
bc− 16385

2
abc,

w2 =
1

2
a− 5

2
b− 21

2
ab− 85

2
c− 341

2
ac− 1365

2
bc− 5461

2
abc,

E = 128abc+ 8ab+ 32ac− 64bc+ 2a− 4b− 16c− 1,

F = 2 (16bc− b− 4c) e1 + (16ac− a− 8c) e2 + 40ce3

+5(−4ab− a+ 2b)e4 + 34be5 + 17ae6.

Using the multiplication table for the basis of O(a, b, c), we have

Proof. µ∗2 =

(
7∑

s=0
µses

)(
7∑

s=0
µses

)
= −1− 5

2a−
17
2 b−

65
2 ab−

257
2 c− 1025

2 ac− 4097
2 bc− 16385

2 abc+JLGO0

+3
(
1
2a− 5

2b−
21
2 ab−

85
2 c−

341
2 ac− 1365

2 bc− 5461
2 abc+ JGO0

)
= w1 + JLGO0 + 3 (w2 + JGO0)

The last equations is eq. (2.5). Similarly

µ∗υ∗ =

(
7∑

s=0
µses

)(
7∑

s=0
υses

)
= 128abc+ 8ab+ 32ac− 64c+ 2a− 4b− 16c− 1

+JLGO0 + 6 [2 (16bc− b− 4c) e1 + (16ac− a− 8c) e2 + 40ce3

+5 (−4ab− a+ 2b) e4 + 34be5 + 17ae6]

= E + JLGO0 + 6F.

The last equation is the eq. (2.7). The others can be proved similarly.
□

Now we give the Catalan’s identities involving the Jacobsthal and
Jacobsthal-Lucas generalized octonions in the following theorem.

Theorem 2.3. For any integers n and r, we have

JGOn+rJGOn−r − JGO2
n

= (−2)n−r [
1

9
(E + JLGO0) (2 (−2)r − JL2r)

−2FJ2r]

(2.9)
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and
JLGOn+rJLGOn−r − JLGO2

n

= (−2)n−r [(E + JLGO0) (JL2r − 2 (−2)r)

+18FJ2r].

(2.10)

Proof. JGOn+rJGOn−r − JGO2
n

=
1

9

[
(µ∗µn+r − υ∗υn+r) (µ∗µn−r − υ∗υn−r)− (µ∗µn − υ∗υn)2

]
=

1

9
(µ∗υ∗µn+rυn−r − υ∗µ∗υn+rµn−r + µ∗υ∗µnυn + υ∗µ∗υnµn)

=
1

9

[
−µn−rυn−r

(
µ∗υ∗µ2r + υ∗µ∗υ2r

)
+ 2 (−2)n (E + JLGO0)

]
=

1

9

[
− (−2)n−r ((E + JGLO0)

(
µ2r + υ2r

)
+ 6F

(
µ2r − υ2r

))
+2 (−2)n (E + JLGO0)]

=
1

9

[
(−2)n−r (E + JLGO0)

(
2− (−2)−r JL2r

)
+18 (−2)n−r FJ2r

]
= (−2)n−r

[
1

9
(E + JLGO0) (2 (−2)r − JL2r)− 2FJ2r

]
.

The second identity in the theorem, i.e., Catalan’s identity for the
Jacobsthal-Lucas generalized octonion, can be proved similarly. □

For r = 1, Theorem 2.3 gives Cassini’s identities for Jacobsthal and
Jacobsthal-Lucas generalized octonions which are given in the following.

Corollary 2.4. For any integer n, we have

JGOn+1JGOn−1 − JGO2
n = − (−2)n−1 [(E + JLGO0)− 2F ] (2.11)

and

JLGOn+1JLGOn−1 − JLGO2
n

= (−2)n−1 [9 (E + JLGO0) + 18F ] . (2.12)

D’Ocagne’s identities for Jacobsthal and Jacobsthal-Lucas generalized
octonions are given in the next theorem.

Theorem 2.5. For any integers n and m, we have

JGOmJGOn+1 − JGOm+1JGOn

= (−2)n [(E + JLGO0) Jm−n + 2FJLm−n] (2.13)
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and

JLGOmJLGOn+1 − JLGOm+1JLGOn (2.14)

= − (−2)n [9 (E + JLGO0) Jm−n + 18FJLm−n]

Proof. Using the Binet formula for the Jacobsthal generelized octonions,
we obtain

JGOmJGOn+1 − JGOm+1JGOn

=
1

9
(µ∗µm − υ∗υm)

(
µ∗µn+1 − υ∗υn+1

)
−1

9

(
µ∗µm+1 − υ∗υm+1

)
(µ∗µn − υ∗υn)

=
1

3
[(−2)n (µ∗υ∗µm−n − υ∗µ∗υm−n)] .

If we substitute equations (2.7) and (2.8) into the last equation, then
we have

JGOmJGOn+1 − JGOm+1JGOn

=
1

3
(−2)n [3 (E + JLGO0) Jm−n + 6FJLm−n]

= (−2)n [(E + JLGO0) Jm−n + 2FJLm−n] .

The proof of the second identity can be done similarly by using the
Binet formula in equation (2.2) . □

3. Some Results for Jacobsthal and Jacobsthal-Lucas
Generalized Octonions

In this section, after deriving famous three identities Catalan’s, Cassini’s
and d’Ocagne’s, we present some other identities for the Jacobsthal and
Jacobsthal-Lucas generalized octonions.

Theorem 3.1. Jacobsthal and Jacobsthal-Lucas generalized octonions
satisfy the following identities

JGO2
n + JLGO2

n

=
10

9
[(w1 + JLGO0) JL2n + 9 (w2 + JGO0) J2n]

+
16

9
(−2)n (E + JLGO0) (3.1)

JGO2
n − JLGO2

n

= −8

9
[(w1 + JLGO0) JL2n + 9 (w2 + JGO0) J2n]

−20

9
(−2)n (E + JLGO0) (3.2)



Some Special Identities for Jacobsthal and Jacobsthal-Lucas Generalized Octonions 23

JGOn+rJLGOn+s − JGOn+sJLGOn+r

= − (−2)n+r+1 (E + JLGO0) Js−r, (3.3)

JLGOm+n + (−1)n JLGOm−n = JLnJLGOn, (3.4)

JLGOmJGOn − JLGOnJGOm

= 2 (−2)m (E + JLGO0) Jn−m, (3.5)

JLGOmJGOn − JGOmJLGOn (3.6)

= − (−2)m+1 [(E + JLGO0) Jn−m − 2FJLn−m]

Proof. We prove the second and fifth identities. We need the Binet
formulas for the Jacobsthal and Jacobsthal-Lucas generelized octonion.

JGO2
n − JLGO2

n =
1

9
(µ∗µn − υ∗υn) (µ∗µn − υ∗υn)

− (µ∗µn + υ∗υn) (µ∗µn + υ∗υn)

= −8

9

[
µ∗2µ2n + υ∗υ2n

]
− 10

9
(−2)n [µ∗υ∗ + υ∗µ∗]

= −8
9

[
(w1 + JLGO0)

(
µ2n + υ2n

)
+ 3 (w2 + JGO0)

(
µ2n − υ2n

)]
−10

9
(−2)n 2 (E + JLGO0)

= −8

9
[(w1 + JLGO0) JL2n + 9 (w2 + JGO0) J2n]

−20
9 (−2)n (E + JLGO0)

Similarly, using Binet formulas again, we get

JLGOmJGOn − JLGOnJGOm = 1
3 (µ

∗µm + υ∗υm) (µ∗µn − υ∗υn)

−1

3
(µ∗µn + υ∗υn) (µ∗µn − υ∗υn)

= −1

3
[µmυm (µ∗υ∗ + υ∗µ∗) + υmµm (υ∗µ∗ + µ∗υ∗)]

=
2

3
(−2)m (E + JLGO0) (µ

n−m − υn−m)

= 2 (−2)m (E + JLGO0) Jn−m

The other identities can be proved similarly from the Binet formulas
in equations (2.1) and (2.2) . □

Since the algebra O(a, b, c) is non-commutative, then it can be seen
what changes in the following theorem.
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Theorem 3.2. For any integers m and n, we have

JGOnJGOm − JGOmJGOn = −4 (−2)m FJn−m (3.7)

and

JLGOnJLGOm − JLGOmJLGOn = 36 (−2)m FJn−m. (3.8)

Proof. From the Binet formula in equation (2.1) given

JGOnJGOm − JGOmJGOn =
1

9
(µ∗µn − υ∗υn) (µ∗µm − υ∗υm)

−1

9
(µ∗µm − υ∗υm) (µ∗µn − υ∗υn)

= −1

9
[−µ∗υ∗µnυm − υ∗µ∗υnµm + µ∗υ∗µmυn + υ∗µ∗υmµn]

=
1

9
[− (µ∗υ∗ − υ∗µ∗) (µnυm − υnµm)]

= −4

3
F [µmυm (µn−m − υn−m)]

= −4 (−2)m FJn−m

Eq. (3.8) can be proved similarly by using the Binet formula in equa-
tion (2.2) . □

Corollary 3.3. From Eq.(3.7) and Eq.(3.8), it is clearly that

JLGOnJLGOm − JLGOmJLGOn = −9 (JGOnJGOm − JGOmJGOn) .
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[14] F.T. Aydin, S.Yüce, A New Approach to Jacobsthal Quaternions, Filomat 31
(18) (2017) 5567–5579.

[15] F.T. Aydin, On Generalizations of the Jacobsthal Sequence, Note on Number
Theory and Discrete Mathematics 24 (1) (2018) 120–135.

[16] D. Tasci, On k-Jacobsthal and k-Jacobsthal-Lucas Quaternions, Journal of Sci-
ence and Arts 3 (40) (2017) 469–476.

[17] S. Yasarsoy, M. Acikgoz and U. Duran, A Study on the k-Jacobsthal and k-
Jacobsthal-Lucas Quaternions and Octonions, Journal of Analysis and Number
Theory 6 (2) (2018) 1–7.
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