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Abstract. In this paper, by using a modified forward-backward
splitting method, the author introduces and studies an iterative al-
gorithm for finding a common element of the set of fixed points of
demicontractive mappings and the set of solutions of variational in-
clusion with set-valued maximal monotone mapping and inverse
strongly monotone mappings in real Hilbert spaces. The author
proves that the sequence xn which is generated by the proposed
iterative algorithm converges strongly to a common element of two
sets above. Finally, some applications are given.
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1. Introduction

Let H be a real Hilbert space. For a multivalued map A : H → 2H ,
the domain of A, D(A), the image of a subset S of H, A(S), the range
of A, R(A), and the graph of A, G(A), are defined as follows:

D(A) := {x ∈ H : Ax ̸= ∅}, A(S) := ∪{Ax : x ∈ S},

R(A) := A(H), G(A) := {[x, u] : x ∈ D(A), u ∈ Ax}.
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A multivalued map A : D(A) ⊂ H → 2H is called monotone if the
inequality

⟨u− v, x− y⟩ ≥ 0

holds for each x, y ∈ D(A), u ∈ Ax, v ∈ Ay.

Let A : H → H be a single-valued nonlinear mapping is said α-inverse
strongly monotone if there exists a constant α > 0 such that

⟨Ax−Ay, x− y⟩ ≥ α∥Ax−Ay∥2, ∀ x, y ∈ H.

It is immediate that if A is α- inverse strongly monotone, then A is
monotone and Lipschitz continuous.
Let K be a nonempty closed convex subset of a real Hilbert space H.

Let A : H → H be a single-valued nonlinear mapping and B : H → 2H

be a set-valued mapping. The variational inclusion problem is as follows:
find x ∈ H such that

0 ∈ B(x) +A(x). (1.1)

The set of solution of (1.1) is denoted by (A+ B)−1(0). If A = 0, then
problem (1.1) becomes the inclusion problem introduced by Rockafel-
lar [18]. Splitting methods have recently received much attention due
to the fact that many nonlinear problems arising in applied areas such
as image recovery, signal processing, and machine learning are mathe-
matically modeled as a nonlinear operator equation and this operator
is decomposed as the sum of two possibly simpler nonlinear operators.
Splitting methods for linear equations were introduced by Peaceman
and Rachford [16] and Douglas and Rachford [6]. A splitting method
for (1.1) means an iterative method for which each iteration involves
only with the individual operators A and B, but not the sum A + B.
A popular method for solving problem (1.1) is the well-known forward-
backward splitting method introduced by Passty [15] and Lions and
Mercier [10].The method is formulated as

xn+1 = (I − λnB)−1(I − λnA)xn, λn > 0, (1.2)

under the condition that D(B) ⊂ D(A). It was shown, see for example
[4], that weak convergence of (1.2) requires quite restrictive assumptions
on A and B, such that the inverse of A is strongly monotone or B is
Lipschitz continuous and monotone and the operator A+B is strongly
monotone on D(B). Hence, the modification is necessary in order to
guarantee the strong convergence of forward-backward splitting method
(see, for example, [7, 20, 19] and the references contained in them).
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Many problems arising in different areas of mathematics such as opti-
mization, variational analysis, differential equations, mathematical eco-
nomics can be modeled as fixed point equations of the form

x = Tx, (1.3)

where T is a nonlinear mapping. Recently, studies on solutions of (1.3)
were extensively carried out in Hilbert spaces and in certain Banach
spaces; see, for example, [11, 12, 13] and the references therein.

Let X be a real normed space, K be a nonempty subset of X. A map
T : K → K is said to be Lipschitz if there exists an L ≥ 0 such that

∥Tx− Ty∥ ≤ L∥x− y∥, ∀x, y ∈ K, (1.4)

if L < 1, T is called contraction and if L = 1, T is called nonexpansive.
The set of fixed points of the mapping T is denoted by Fix(T ) := {x ∈
D(T ) : x = Tx}. We assume that Fix(T ) is nonempty. A map T is
called quasi-nonexpansive if ∥Tx− p∥ ≤ ∥x− p∥ holds for all x in K and
p ∈ Fix(T ). The mapping T : K → K is said to be firmly nonexpansive,
if

∥Tx− Ty∥2 ≤ ∥x− y∥2 − ∥(x− y)− (Tx− Ty)∥2, ∀x, y ∈ K.

A mapping T : K → H is called k-strictly pseudo-contractive if there
exists k ∈ [0, 1) such that

∥Tx− Ty∥2 ≤ ∥x− y∥2 + k∥x− y − (Tx− Ty)∥2 ∀x, y ∈ K.

A map T is called k-demi-contractive if Fix(T ) ̸= ∅ and for k ∈ [0, 1),
we have

∥Tx− p∥2 ≤ ∥x− p∥2 + k∥x− Tx∥2 ∀x ∈ K, p ∈ Fix(T ).

Remark 1.1. The class of demicontractive mappings is fundamental be-
cause it includes many types of nonlinear mappings arising in applied
mathematics and optimization. We can see from the above definitions
that the demicontractive mappings contains these mappings such as the
directed mappings, the quasi-nonexpansive mappings, and the strictly
pseudocontractive mappings with nonempty fixed point set.

Almost results existing for solving variational inclusion and fixed point
problems by using forward-backward splitting method have been done
for monotone operators and nonexpansive mappings.

In this paper, motivated by above results, the author introduces a
new iterative algorithm and proves a strong convergence theorem for
variational inclusion problem (1.1) and the fixed point problem (1.3)
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involving demicontractive mappings in Hilbert spaces without any com-
pactness assumption. Finally, application to optimization problems with
constraints is provided to support our main results.

2. Preliminaries

The demiclosedness of T usually plays an important role in dealing with
the convergence of fixed point iterative algorithms.

Definition 2.1. Let H be a real Hilbert space and T : D(T ) ⊂ H → H
be a mapping. I − T is said to be demiclosed at 0 if for any sequence
{xn} ⊂ D(T ) such that {xn} converges weakly to p and ∥xn − Txn∥
converges to zero, then p ∈ Fix(T ).

Let a set-valued mapping B : H → 2H be a maximal monotone. We
define a resolvent operator JB

λ generated by B and λ as follows:

JB
λ = (I + λB)−1(x), ∀x ∈ H,

where λ is a positive number. It is easily to see that the resolvent oper-
ator JB

λ is single-valued, nonexpansive and 1-inverse strongly monotone
and moreover, a solution of the problem 1.1 is a fixed point of the oper-
ator JB

λ (I − λA) for all λ > 0 (see, for example, [9]).

Lemma 2.2. [10] Let B : H → 2H be a maximal monotone mapping
and A : H → H be a Lipschitz and continuous monotone mapping. Then
the mapping B +A : H → 2H is maximal monotone.

Lemma 2.3 ([5]). Let H be a real Hilbert space. Then for any x, y ∈ H,
the following inequalities hold:

∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩.

∥λx+ (1− λ)y∥2 = λ∥x∥2 + (1− λ)∥y∥2 − (1− λ)λ∥x− y∥2, λ ∈ (0, 1).

Lemma 2.4 ( [20]). Assume that {an} is a sequence of nonnegative real
numbers such that an+1 ≤ (1− αn)an + αnσn for all n ≥ 0, where {αn}
is a sequence in (0, 1) and {σn} is a sequence in R such that

(a)
∞∑
n=0

αn = ∞, (b) lim sup
n→∞

σn ≤ 0 or
∞∑
n=0

|σnαn| < ∞. Then lim
n→∞

an =

0.

Lemma 2.5. [12] Let K be a nonempty closed convex subset of a real
Hilbert space H and T : K → K be a mapping.
(i) If T is a k-strictly pseudo-contractive mapping, then T satisfies the
Lipschitzian condition

∥Tx− Ty∥ ≤ 1 + k

1− k
∥x− y∥.
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(ii) If T is a k-strictly pseudo-contractive mapping, then the mapping
I − T is demiclosed at 0.

Lemma 2.6 ( [12], Proposition 2.1 ). Assume K is a closed convex
subset of a Hilbert space H. Let T : K → K be a self-mapping of C.
If T is a k-demicontractive mapping, then the fixed point set Fix(T ) is
closed and convex.

Lemma 2.7. [17] Let tn be a sequence of real numbers that does not
decrease at infinity in a sense that there exists a subsequence tni of tn
such that tni such that tni ≤ tni+1 for all i ≥ 0. For sufficiently large
numbers n ∈ N, an integer sequence {τ(n)} is defined as follows:

τ(n) = max{k ≤ n : tk ≤ tk+1}.
Then, τ(n) → ∞ as n → ∞ and

max{tτ(n), tn} ≤ tτ(n)+1.

Lemma 2.8. Let H be a real Hilbert space and A : H → H be an
α-inverse strongly monotone mapping. Then, I − θA is nonexpansive
mapping for all x, y ∈ H and θ ∈ [0, 2α].

Proof. For all x, y ∈ H, we have

∥(I − θA)x− (I − θA)y∥2 = ∥(x− y)− θ(Ax−Ay)∥2

= ∥x− y∥2 − 2θ⟨Ax−Ay, x− y⟩+ ∥Ax−Ay∥2

≤ ∥x− y∥2 + θ(θ − 2α)∥Ax−Ay∥2.
□

3. Main results

Theorem 3.1. Let K be a nonempty closed convex subset of a real
Hilbert space H. Let A be an α-inverse strongly monotone operator of
K into H. Let f : K → K be a b-contraction mapping and B be a
maximal monotone operator on H into 2H such that the domain of B
is included in K. Let T : K → K be a β-demicontractive mapping such
that Fix(T ) ∩ (A + B)−1(0) is nonempty and I − T is demiclosed at
origin. For given x0 ∈ K, let {xn} be generated by the algorithm:

xn+1 = αnf(xn)+(1−αn)
(
θnJ

B
λn
(I−λnA)xn+(1−θn)TJ

B
λn
(I−λnA)xn

)
,

(3.1)
where {λn}, {θn} and {αn} be sequences in (0, 1) satisfying the following
conditions:

(i) lim
n→∞

αn = 0,
∞∑
n=0

αn = ∞ and λn ∈ [a, b] ⊂
(
0, min{1, 2α}

)
.

(ii) θn ∈]β, 1[ and lim
n→∞

inf(1− θn)(θn − β) > 0.
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Then, the sequence {xn} generated by (3.1) converges strongly to x∗ ∈
Fix(T ) ∩ (A + B)−1(0), which is the unique solution of the following
variational inequality:

⟨x∗ − f(x∗), x∗ − p⟩ ≤ 0, ∀p ∈ Fix(T ) ∩ (A+B)−1(0). (3.2)

Proof. From (I − f) is strongly monotone and Fix(T )∩ (A+B)−1(0) is
closed convex, then the variational inequality (3.2) has a unique solution
in Fix(T )∩(A+B)−1(0). Below we use x∗ to denote the unique solution
of (3.2). For each n ≥ 0, we put zn := JB

λn
(I − λnA)xn and yn =

θnzn + (1− θn)Tzn. Let p ∈ Γ. Then from Lemma 2.8, we have

∥zn − p∥ = ∥JB
λn
(I − λnA)xn − p∥ ≤ ∥xn − p∥, ∀n ≥ 0.

By using (3.1), Lemma 2.3 and T is β-demicontractive, we have

∥yn − p∥2 =
∥∥∥θn(zn − p) + (1− θn)(Tzn − p)

∥∥∥2
= θn∥zn − p∥2 + (1− θn)∥Tzn − p∥2 − (1− θn)θn∥Tzn − zn∥2

≤ θn∥zn − p∥2 + (1− θn)
(
∥zn − p∥2 + β∥zn − Tzn∥2

)
− (1− θn)θn∥Tzn − zn∥2.

Hence,

∥yn − p∥ ≤ ∥zn − p∥2 − (1− θn)(θn − β)∥Tzn − zn∥2. (3.3)

Since θn ∈]β, 1[, we obtain,

∥yn − p
∥∥∥ ≤ ∥zn − p

∥∥∥. (3.4)

Therefore

∥yn − p∥ ≤ ∥zn − p∥ ≤ ∥xn − p∥. (3.5)

By using (3.1) and inequality (3.5), we have

∥xn+1 − p∥ = ∥αnf(xn) + (1− αn)yn − p∥
≤ αn∥f(xn)− f(p)∥+ (1− αn)∥yn − p∥+ αn∥f(p)− p∥
≤ [1− (1− b)αn]∥xn − p∥+ αn∥f(p)− p∥

≤ max {∥xn − p∥, ∥f(p)− p∥
1− b

}.

By induction, it is easy to see that

∥xn − p∥ ≤ max {∥x0 − p∥, ∥f(p)− p∥
1− b

}, n ≥ 1.
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Hence, {xn} is bounded.
Thus from inequality (3.3), we have

∥xn+1 − p∥2 = ∥αn(f(xn)− p) + (1− αn)(yn − p)∥2

≤ α2
n∥f(xn)− p∥2 + (1− αn)

2∥yn − p∥2 + 2αn(1− αn)∥f(xn)− p∥∥yn − p∥
≤ α2

n∥f(xn)− p∥2 + (1− αn)
2∥yn − p∥2 + 2αn(1− αn)∥f(xn)− p∥∥yn − p∥

≤ α2
n∥f(xn)− p∥2 + (1− αn)

2∥xn − p∥2 − (1− αn)
2(1− θn)(θn − β)∥Tzn − zn∥2

+ 2αn(1− αn)∥f(xn)− p∥∥xn − p∥.

Hence,

(1− αn)
2(1− θn)(θn − β)∥Tzn − zn∥2 ≤ ∥xn − p∥2 − ∥xn+1 − p∥2 + α2

n∥f(xn)− p∥2

+ 2αn(1− αn)∥f(xn)− p∥∥xn − p∥.

Since {xn} and {f(xn)} are bounded, then there exists a constant C > 0,
we have

(1−αn)
2(1− θn)(θn − β)∥Tzn − zn∥2 ≤ ∥xn − p∥2 −∥xn+1 − p∥2 +αnC.

(3.6)
Next, I prove that xn → x∗. To see this, let us consider two possible
cases.
Case 1. Assume that the sequence {∥xn−p∥} is monotonically decreas-
ing. Then {∥xn − p∥} must be convergent. Clearly, we have

lim
n→∞

[
∥xn − p∥2 − ∥xn+1 − p∥2

]
= 0. (3.7)

It then implies from (3.6) that

lim
n→∞

(1− θn)(θn − β)∥Tzn − zn∥2 = 0. (3.8)

Since lim
n→∞

inf(1− θn)(θn − β) > 0, we have

lim
n→∞

∥∥∥Tzn − zn

∥∥∥ = 0. (3.9)

From (3.1) and Lemma 2.8, it follows that

∥xn+1 − p∥2 = ∥αn(f(xn)− p) + (1− αn)(yn − p)∥2

≤ α2
n∥f(xn)− p∥2 + (1− αn)

2∥yn − p∥2 + 2αn(1− αn)∥f(xn)− p∥∥yn − p∥
≤ α2

n∥f(xn)− p∥2 + (1− αn)
2∥zn − p∥2 + 2αn(1− αn)∥f(xn)− p∥∥yn − p∥

= α2
n∥f(xn)− p∥2 + (1− αn)

2∥JB
λn
(I − λnA)xn − JB

λn
(I − λnA)p∥2

+ 2αn(1− αn)∥f(xn)− p∥∥yn − p∥

≤ α2
n∥f(xn)− p∥2 + (1− αn)

2
[
∥xn − p∥2 + a(b− 2α)∥Axn −Ap∥2

]
+ 2αn(1− αn)∥f(xn)− p∥∥yn − p∥.
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Therefore, we have

(1− αn)
2a(2α− b)∥Axn −Ap∥2 ≤ ∥xn − p∥2 − ∥xn+1 − p∥2 + 2αn(1− ταn)∥f(xn)− p∥∥yn − p∥

+2αn(1− αn)∥f(xn)− p∥∥yn − p∥.

Since, αn → 0 as n → ∞, inequality (3.7) and {xn} is bounded, we
obtain

lim
n→∞

∥Axn −Ap∥2 = 0. (3.10)

Since JB
λn

is 1-inverse strongly monotone and (3.1), we have

∥zn − p∥2 = ∥JB
λn
(I − λnA)xn − JB

λn
(I − λnA)p∥2

≤ ⟨zn − p, (I − λnA)xn − (I − λnA)p⟩

=
1

2

[
∥(I − λnA)xn − (I − λnA)p∥2 + ∥zn − p∥2 − ∥(I − λnA)xn − (I − λnA)p− (zn − p)∥2

]
≤ 1

2

[
∥xn − p∥2 + ∥zn − p∥2 − ∥xn − zn∥2 + 2λn⟨zn − p,Axn −Ap⟩ − λn

2∥Axn −Ap∥2
]
.

So, we obtain

∥zn−p∥2 ≤ ∥xn−p∥2−∥xn−zn∥2+2λn⟨zn−p,Axn−Ap⟩−λn
2∥Axn−Ap∥2,

and thus

∥xn+1 − p∥2 = ∥αn(f(xn)− p) + (1− αn)(yn − p)∥2

≤ α2
n∥f(xn)− p∥2 + (1− αn)

2∥zn − p∥2 + 2αn(1− αn)∥f(xn)− p∥∥yn − p∥
≤ α2

n∥f(xn)− p∥2 + ∥xn − p∥2 − (1− αn)
2∥xn − zn∥2 − (1− αn)

2λn
2∥Axn −Ap∥2

+ 2λn(1− αn)
2⟨zn − p,Axn −Ap⟩+ 2αn(1− αn)∥f(xn)− p∥∥yn − p∥.

Since, αn → 0 as n → ∞, inequalities (3.7) and (3.10), we obtain

lim
n→∞

∥xn − zn∥2 = 0. (3.11)

Next, i prove that lim sup
n→+∞

⟨x∗ − f(x∗), x∗ − xn⟩ ≤ 0. Since H is reflexive

and {xn} is bounded, there exists a subsequence {xnk
} of {xn} such that

xnk
converges weakly to x∗∗ in K and

lim sup
n→+∞

⟨x∗ − f(x∗), x∗ − xn⟩ = lim
k→+∞

⟨x∗ − f(x∗), x∗ − xnk
⟩.

From (3.9) and I − T is demiclosed, we obtain x∗∗ ∈ Fix(T ). Let us
show x∗∗ ∈ (A + B)−1(0). Since A be an α-inverse strongly monotone,
A is Lipschitz continuous monotone mapping. It follows from Lemma
2.2 that B + A is maximal monotone. Let (v, g) ∈ G(B + A), i.e.,
g−Av ∈ B(v). Since znk

= JB
λnk

(xnk
−λnk

Axnk
), we have xnk

−λnk
xnk

∈

(I + λnk
B)znk

, i.e.,
1

λnk

(xnk
− znk

− λnk
Axnk

) ∈ B(znk
). By maximal
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monotonicity of B +A, we have

⟨v − znk
, g −Av − 1

λnk

(xnk
− znk

− λnk
Axnk

)⟩ ≥ 0

and so

⟨v − znk
, g⟩ ≥ ⟨v − znk

, Av − 1

λnk

(xnk
− znk

− λnk
Axnk

)⟩

= ⟨v − znk
, Av −Aznk

+Aznk
+

1

λnk

(xnk
− znk

− λnk
Axnk

)⟩

≥ ⟨v − znk
, Aznk

−Axnk
⟩+ ⟨v − znk

,
1

λnk

(xnk
− znk

)⟩.

It follows from ∥zn − xn∥ → 0, ∥Azn − Axn∥ → 0 and znk
converges

weakly to x∗∗, we get

lim
k→+∞

⟨v − znk
, g⟩ = ⟨v − x∗∗, g⟩ ≥ 0

and hence x∗∗ ∈ (A+B)−1(0). Therefore, x∗∗ ∈ (A+B)−1(0)∩Fix(T ).
On other hand, the fact that x∗ solves (3.2), we then have

lim sup
n→+∞

⟨x∗ − f(x∗), x∗ − xn⟩ = lim
k→+∞

⟨x∗ − f(x∗), x∗ − xnk
⟩

= ⟨x∗ − f(x∗), x∗ − x∗∗⟩ ≤ 0.

Finally, we show that xn → x∗. From (3.1) and Lemma 2.3, we get that

∥xn+1 − x∗∥2 = ∥αnf(xn) + (1− αn)yn − x∗∥2

≤ ∥αn(f(xn)− f(x∗)) + (1− αn)(yn − x∗)∥2 + 2αn⟨x∗ − f(x∗), x∗ − xn+1⟩

≤
(
αn∥f(xn)− f(x∗)∥+ ∥(1− αn)(yn − x∗)∥

)2
+ 2αn⟨x∗ − f(x∗), x∗ − xn+1⟩

≤
(
αnb∥xn − x∗∥+ (1− αn)∥yn − x∗∥

)2
+ 2αn⟨x∗ − f(x∗), x∗ − xn+1⟩

≤
(
(1− αn(1− b))∥xn − x∗∥

)2
+ 2αn⟨x∗ − f(x∗), x∗ − xn+1⟩

≤ (1− αn(1− b))∥xn − x∗∥2 + 2αn⟨x∗ − f(x∗), x∗ − xn+1⟩.

From Lemma 2.4, its follows that xn → x∗.
Case 2. Assume that the sequence {∥xn − x∗∥} is not monotonically
decreasing sequence. Set Γn = ∥xn − x∗∥2 and τ : N → N be a mapping
for all n ≥ n0 (for some n0 large enough) by τ(n) = max{k ∈ N :
k ≤ n, Γk ≤ Γk+1}. We have τ is a non-decreasing sequence such that
τ(n) → ∞ as n → ∞ and Γτ(n) ≤ Γτ(n)+1 for n ≥ n0. Let i ∈ N∗, from
(3.6), we have

(1− ατ(n))
2(1− θτ(n))(θτ(n) − β)∥zτ(n) − Tzτ(n)∥2 ≤ ατ(n)C.
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Furthermore, we have

lim
n→+∞

(1− ατ(n))
2(1− θτ(n))(θτ(n) − β)∥zτ(n) − Tzτ(n)∥2 = 0.

Since θτ(n) ∈]β, 1[ and lim
n→∞

inf(1− θτ(n))(θτ(n) − β) > 0, we have

lim
n→∞

∥zτ(n) − Tzτ(n)∥ = 0. (3.12)

By a similar argument as in case 1, we can show that xτ(n) is bounded
in K and lim sup

τ(n)→+∞
⟨x∗ − f(x∗), x∗ − xτ(n))⟩ ≤ 0. We have for all n ≥ n0,

0 ≤ ∥xτ(n)+1−x∗∥2−∥xτ(n)−x∗∥2 ≤ ατ(n)[−(1−b)∥xτ(n)−x∗∥2+2⟨x∗−f(x∗), x∗−xτ(n)+1⟩],
which implies that

∥xτ(n) − x∗∥2 ≤ 2

1− b
⟨x∗ − f(x∗), x∗ − xτ(n)+1⟩.

Then, we have
lim
n→∞

∥xτ(n) − x∗∥2 = 0.

Therefore,
lim
n→∞

Γτ(n) = lim
n→∞

Γτ(n)+1 = 0.

Thus, by Lemma 2.7, we conclude that

0 ≤ Γn ≤ max{Γτ(n), Γτ(n)+1} = Γτ(n)+1.

Hence, lim
n→∞

Γn = 0, that is {xn} converges strongly to x∗. This com-

pletes the proof. □

In the special case, where T is a strictly pseudo-contractive mapping,
then Theorem 3.1 is reduced to the following:

Theorem 3.2. Let K be a nonempty closed convex subset of a real
Hilbert space H. Let A be an α-inverse strongly monotone operator of K
into H. Let f : K → K be a b-contraction mapping and B be a maximal
monotone operator on H into 2H such that the domain of B is included
in K. Let T : K → K be a β-strictly pseudo-contractive mapping such
that Fix(T ) ∩ (A + B)−1(0) is nonempty. For given x0 ∈ K, let {xn}
be generated by the algorithm:

xn+1 = αnf(xn)+(1−αn)
(
θnJ

B
λn
(I−λnA)xn+(1−θn)TJ

B
λn
(I−λnA)xn

)
,

(3.13)
where {λn}, {θn} and {αn} be sequences in (0, 1) satisfying the following
conditions:

(i) lim
n→∞

αn = 0,
∞∑
n=0

αn = ∞ and λn ∈ [a, b] ⊂
(
0, min{1, 2α}

)
.

(ii) θn ∈]β, 1[ and lim
n→∞

inf(1− θn)(θn − β) > 0.
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Then, the sequence {xn} generated by (3.13) converges strongly to x∗ ∈
Fix(T ) ∩ (A + B)−1(0), which is the unique solution of the following
variational inequality (3.2).

Proof. Since every strictly pseudo-contractive is demicontractive map-
ping, then, the proof follows Lemma 2.5 and Theorem 3.1. □

Finally, the following the minimization of composite objective func-
tion of the type

Problem 3.3.

min
x∈H

F (x) + g(x), (3.14)

where F : H → R ∪ {+∞} is proper, convex and lower semi-continuous
functional and g : H → R is convex functional.

Many optimization problems from image processing [3], statistical
regression, machine learning (see, e.g., [21] and the references contained
therein), etc can be adapted into the form of (3.14).
Observe that problem 3.3 is equivalent to find x ∈ H such that

0 ∈ ∂F (x) +∇g(x). (3.15)

It is well known ∂F is maximal monotone (see, e.g., Minty [14]).

Lemma 3.4. (Baillon and Haddad [2]) Let H be a real Hilbert space,
g a continuously Fréchet differentiable, convex functional on H and ∇g
the gradient of g. If ∇g is 1

α -Lipschitz continuous, then ∇g is α-inverse
strongly monotone.

Hence, one has the following result.

Theorem 3.5. Let H be a real Hilbert space and g : H → R a con-
tinuously Fréchet differentiable, convex functional on H and ∇g is 1

α -
Lipschitz continuous. Let f : H → H be a b-contraction mapping and
F : H → R ∪ {+∞} is proper, convex and lower semi-continuous func-
tional. For given x0 ∈ H, let {xn} be generated by the algorithm:

xn+1 = αnf(xn) + (1− αn)J
∂F
λn

(I − λn∇g)xn, (3.16)

where {λn} and {αn} be sequences in (0, 1) satisfying the following con-
ditions:

(i) lim
n→∞

αn = 0,

∞∑
n=0

αn = ∞ and λn ∈ [a, b] ⊂
(
0, min{1, 2α}

)
Suppose that Problem 3.3 is consistent. Then, the sequence {xn} gener-
ated by (3.16) converges strongly to a solution of Problem 3.3, which is
the unique solution of the following variational inequality:

⟨x∗ − f(x∗), x∗ − p⟩ ≤ 0, ∀p ∈ (∇g + ∂F )−1(0). (3.17)
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Proof. We set B = ∂F, ∇g = A, K = H and T = I into Theorem 3.1.
Then, the proof follows Theorem 3.1. □
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