Caspian Journal of Mathematical Sciences (CJMS)
University of Mazandaran, Iran
http://cjms.journals.umz.ac.ir
ISSN: 2676-7260
CJMS. 11(1)(2022), 40-51
(RESEARCH PAPER)

A note on some parameters of domination on the edge neighborhood graph of a graph

F. Movahedi ${ }^{1}$ and M. H. Akhbari ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Sciences, Golestan University, Gorgan, Iran.
${ }^{2}$ Department of Mathematics, Estahban Branch, Islamic Azad University, Estahban, Iran.

Abstract

The edge neighborhood graph $N_{e}(G)$ of a simple graph G is the graph with the vertex set $E \cup S$ where S is the set of all open edge neighborhood sets of G and two vertices $u, v \in V\left(N_{e}(G)\right)$ adjacent if $u \in E$ and v is an open edge neighborhood set containing u. In this paper, we determine the domination number, the total domination number, the independent domination number and the 2-domination number in the edge neighborhood graph. We also obtain a 2-domination polynomial of the edge neighborhood graph for some certain graphs.

Keywords: Edge neighborhood graph, Domination number, Total domination, Independent domination, 2-domination polynomial.

2020 Mathematics subject classification: 05C69, 05C72.

1. Introduction

Let $G=(V, E)$ be a simple graph with $|V(G)|=n$ vertices and the size of $|E(G)|=m$ edges. The open neighborhood of a vertex u is denoted by $N_{G}(u)$ is the set of all vertices adjacent to u in G and the closed neighborhood $N_{G}[u]=N_{G}(u) \cup\{u\}$. The number of edges incident to a

[^0]vertex u in G and the minimum degree of vertices of G are denoted by $\operatorname{deg}_{G}(u)$ and δ_{G}, respectively [7]. Let e be an edge in G. There are two vertices u and v in $V(G)$ such that $e=u v$. The degree of an edge e is defined to be $\operatorname{deg}(e)=\operatorname{deg}(u)+\operatorname{deg}(v)-2$. An edge is called an isolated edge if $\operatorname{deg}(e)=0$ [11].
A fundamental concept in graph theory is domination which has been studied extensively [7, 8]. A set $D \subseteq V$ is a dominating set if every vertex in $V \backslash D$ is adjacent to at least one vertex in D. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set in G. In graph G with no isolated vertex, the set D is a total dominating set of G if every vertex in V is adjacent to some vertex in D. The minimum cardinality of a total dominating set of G is the total domination number $\gamma_{t}(G)$.
A subset of vertices is called independent if no two vertices in this subset are adjacent. A set $D \subseteq V$ is an independent dominating set if D is the dominating set and the independent set. The independent domination number of G is denoted by $\gamma_{i}(G)$ which is the minimum size of an independent dominating set of G. A 2-dominating set of G for every vertex of $V \backslash D$ has at least two neighbours in D. The 2-domination number of G, denoted by $\gamma_{2}(G)$ is the minimum size of the 2-dominating set of G. 7].

Graph polynomials are a useful field for analyzing the properties of graphs. In [2 the domination polynomial of a graph is introduced. Let $D_{2}(G, i)$ be the number of the 2-dominating sets of a graph G with cardinality i for $i \geq \gamma_{2}(G)$. The 2-domination polynomial of G is defined as $D_{2}(G, x)=\sum_{i=\gamma_{2}(G)}^{|V(G)|} d_{2}(G, i) x^{i}$ [12].
Kulli in 10 introduced a neighborhood graph $N(G)$ of graph G and study some properties of this graph. The neighborhood graph $N(G)$ of a graph G is the graph with the vertex set $V(G) \cup S$ where S is the set of all open neighborhood sets of G and two vertices u and v in $N(G)$ are adjacent if $u \in V(G)$ and v is an open neighborhood set containing u. In [1], some domination parameters in the neighborhood graph are computed. These domination parameters are also investigated on the join and the corona of two neighborhood graphs.
Kulli introduced a new concept of graphs as the edge neighborhood graph of a graph that is denoted by $N_{e}(G) . N_{e}(G)$ of G is the graph with the vertex set $E(G) \cup S$ where S is the set of all open edge neighborhood sets of the edges in G. Two vertices u and v in $N_{e}(G)$ are adjacent if $u \in E(G)$ and v is an open edge neighborhood set containing u. In Figure 1, graph G and its edge neighborhood graph $N_{e}(G)$ are shown. For the graph $G, N\left(e_{1}\right)=\left\{e_{2}, e_{3}\right\}, N\left(e_{2}\right)=\left\{e_{1}, e_{3}, e_{4}\right\}, N\left(e_{3}\right)=\left\{e_{1}, e_{2}, e_{4}\right\}$
and $N\left(e_{4}\right)=\left\{e_{2}, e_{3}\right\}$ are the open edge neighborhood sets of edges of G [11.

Figure 1. The graph G and the edge neighborhood graph of G.

In this paper, we obtain some domination parameters of graph $N_{e}(G)$ of a graph G. We also determine the 2-domination polynomial of $N_{e}(G)$ for some certain graphs G.

2. Preliminaries

In this section, we recall some results that establish the domination number, the total domination number, the independent domination number and the 2-domination number for graphs, that are used in this paper.

Lemma 2.1. [11] For any graph G with n vertices and m edges without isolated edge, $N_{e}(G)$ is a bipartite graph with $2 m$ vertices and the number of edges is equal to

$$
\frac{1}{2}\left[\sum_{e_{i} \in E(G)} \operatorname{deg}\left(e_{i}\right)+\sum_{e_{i} \in E(G)} \operatorname{deg}\left(N\left(e_{i}\right)\right)\right] .
$$

Lemma 2.2. 11 If e is an isolated edge of a graph, the $N(e)$ is null set.

Lemma 2.3. 11] If P_{n} is a path with $n \geq 3$,

$$
N_{e}\left(P_{n}\right)=2 P_{n-1} .
$$

Lemma 2.4. [11] If C_{n} is a cycle with $n \geq 3$, then

$$
N_{e}\left(C_{n}\right)= \begin{cases}2 C_{n} & \text { if } n \text { is even }, \\ C_{2 n} & \text { if } n \text { is odd } .\end{cases}
$$

Lemma 2.5. [11] $N_{e}(G)=\bar{K}_{n}$ if and only if for $n \geq 1, G=n K_{2}$.
Lemma 2.6. 11] $N_{e}(G)=2 n P_{2}$ if and only if for $n \geq 1, G=n P_{3}$.
Lemma 2.7. [11 If a graph G is an r-regular, then $N_{e}(G)$ is a $2(r-1)$ regular.
Lemma 2.8. [9] Let $\gamma(G)$ be the domination number of a graph G.
(1) For $n \geq 3, \gamma\left(C_{n}\right)=\gamma\left(P_{n}\right)=\left\lceil\frac{n}{3}\right\rceil$.
(2) For $n \geq 2, \gamma\left(K_{n}\right)=1$.
(3) For $n \geq 2, \gamma\left(\bar{K}_{n}\right)=n$.

Lemma 2.9. 9] Let G be an r-regular graph of order n. Then,

$$
\gamma(G) \geq \frac{n}{r+1} .
$$

Lemma 2.10. 3] Let $\gamma_{t}(G)$ be the total domination number of G. Then,

$$
\gamma_{t}\left(P_{n}\right)=\gamma_{t}\left(C_{n}\right)= \begin{cases}\frac{n}{2} & \text { if } n \equiv 0(\bmod 4), \\ \frac{n+2}{2} & \text { if } n \equiv 2(\bmod 4), \\ \frac{n+1}{2} & \text { otherwise. }\end{cases}
$$

Lemma 2.11. [3] Let G be a graph of order n with $\delta_{G} \geq 4$. Then, $\gamma_{t}(G) \leq \frac{3}{7} n$.
Lemma 2.12. 4]
(1) For every $n \geq 4$,

$$
\gamma_{2}\left(P_{n}\right)= \begin{cases}\frac{n}{2}+1 & \text { if } n \text { is even }, \\ \frac{n-1}{2}+1 & \text { if } n \text { is odd } .\end{cases}
$$

(2) For every $n \geq 4$,

$$
\gamma_{2}\left(C_{n}\right)= \begin{cases}\frac{n}{2} & \text { if } n \text { is even } \\ \frac{n+1}{2} & \text { if } n \text { is odd }\end{cases}
$$

Lemma 2.13. 5] If G is a graph of order n with the minimum degree at least 2, then

$$
\gamma_{2}(G) \leq \frac{2}{3} n
$$

Lemma 2.14. 6]
(1) $\gamma_{i}\left(P_{n}\right)=\gamma_{i}\left(C_{n}\right)=\left\lceil\frac{n}{3}\right\rceil$.
(2) If G is a bipartite graph of order n and without isolated vertex, then

$$
\gamma_{i}(G) \leq \frac{n}{2}
$$

Theorem 2.15. 5] Let G be a graph without isolated vertex and isolated edge with the minimum degree δ_{G}. If $\delta_{N_{e}(G)}$ is the minimum degree of graph $N_{e}(G)$, then

$$
\delta_{G} \leq \delta_{N_{e}(G)}
$$

Proof. Assume that $e \in V\left(N_{e}(G)\right)$ with $\operatorname{deg}(e)=\delta_{N_{e}(G)}$. So, there are two vertices $u, v \in V(G)$ such that $e=u v$. Therefore, we have $\operatorname{deg}(e)=\operatorname{deg}(u)+\operatorname{deg}(v)-2$. Suppose that $u \in V(G)$ with $\operatorname{deg}(u)=\delta_{G}$ and $\delta_{G} \geq 1$.
If $\delta_{G}=1$, since G is a graph without isolated edge, $\operatorname{deg}(v) \geq 2$. Therefore $\operatorname{deg}(u) \leq \operatorname{deg}(e)$.
If $\operatorname{deg}(u) \geq 2$ then, $\operatorname{deg}(v) \geq 3$. Therefore, $\operatorname{deg}(u) \leq \operatorname{deg}(e)$. It is shown that the result holds for every $\delta_{G} \geq 1$.

Lemma 2.16. 12] If a graph G consists of m components G_{1}, \ldots, G_{m}, then

$$
D_{2}(G, x)=D_{2}\left(G_{1}, x\right) \ldots D_{2}\left(G_{m}, x\right) .
$$

Lemma 2.17. [12] For every $n \geq 4$,

$$
\text { (1) } D_{2}\left(P_{n}, x\right)=\left\{\begin{array}{lr}
x^{\frac{n}{2}+1}\left(2(1+x)^{\frac{n}{2}-1}-x^{\frac{n}{2}-1}\right) & \text { if } n \text { is even, } \\
x^{\frac{n+1}{2}}\left((1+x)^{\frac{n-1}{2}}\right) & \text { if } n \text { is odd. }
\end{array}\right.
$$

$$
\text { (2) Let } A=\sum_{i=0}^{\frac{n-5}{2}}\left(\left(\frac{n-1}{2}\right)+\left(\frac{n-3}{i}\right)\right) x^{i} \text {. }
$$

$$
D_{2}\left(C_{n}, x\right)= \begin{cases}x^{\frac{n}{2}}\left(2(1+x)^{\frac{n}{2}}-x^{\frac{n}{2}}\right) & \text { if } n \text { is even }, \\ x^{\frac{n+1}{2}}\left(1+2 A+n x^{\frac{n-3}{2}}+x^{\frac{n-1}{2}}\right) & \text { if } n \text { is odd. }\end{cases}
$$

3. Main results

In this section, we obtain the main results for computing some domination parameters on an edge neighborhood graph of a graph. Also, the 2-domination polynomial of $N_{e}(G)$ for some certain graphs are computed.

3.1. Domination.

Theorem 3.1. Let the edge neighborhood graph of G be $N_{e}(G)$. Then,
(1) $\gamma\left(N_{e}\left(P_{n}\right)\right)=2\left\lceil\frac{n-1}{3}\right\rceil$.
(2) $\gamma\left(N_{e}\left(C_{n}\right)\right)=\left\{\begin{array}{l}2\left\lceil\frac{n}{3}\right\rceil \quad \text { if } n \text { is even, } \\ \left\lceil\frac{2 n}{3}\right\rceil \quad \text { if } n \text { is odd. }\end{array}\right.$
(3) for $n \geq 1, \gamma\left(N_{e}\left(n K_{2}\right)\right)=n$.
(4) for $n \geq 1, \gamma\left(N_{e}\left(n P_{3}\right)\right)=2 n$.

Proof. (1) Using Lemma 2.3, $N_{e}\left(P_{n}\right)$ is a graph with two components P_{n-1}. Since by Lemma 2.8(1), $\gamma\left(P_{n-1}\right)=\left\lceil\frac{n-1}{3}\right\rceil$ then,

$$
\gamma\left(N_{e}\left(P_{n}\right)\right)=2 \gamma\left(P_{n-1}\right)=2\left\lceil\frac{n-1}{3}\right\rceil .
$$

(2) If n is even, then using Lemma 2.4, $N_{e}\left(C_{n}\right)=2 C_{n}$. So, we determine the domination number of C_{n}. Therefore,

$$
\gamma\left(N_{e}\left(C_{n}\right)\right)=2 \gamma\left(C_{n}\right) .
$$

Using Lemma 2.8(1). The result is complete.
If n is odd, then since by Lemma $2.4 N\left(C_{n}\right)$ is equal with $C_{2 n}$, we consider a cycle of order $2 n$. For this case, using Lemma 2.8(1), we have

$$
\gamma\left(N_{e}\left(C_{n}\right)\right)=\gamma\left(C_{2 n}\right)=\left\lceil\frac{2 n}{3}\right\rceil .
$$

(3) Let G be a graph with n components as K_{2} for $n \geq 1$. By lemma 2.5, $N_{e}(G)=\bar{K}_{n}$. Using Lemma 2.8(3), we have $\gamma\left(\bar{K}_{n}\right)=n$. Therefore,

$$
\gamma\left(N_{e}\left(n K_{2}\right)\right)=\gamma\left(\bar{K}_{n}\right)=n .
$$

(4) Since by Lemma 2.6, $N_{e}\left(n P_{3}\right)=2 n P_{2}$ and $\gamma\left(P_{2}\right)=1$, we have

$$
\gamma\left(N_{e}\left(n P_{3}\right)\right)=2 n \gamma\left(P_{2}\right)=2 n .
$$

Theorem 3.2. Let G be an r-regular graph with m edges. Then,

$$
\frac{2 m}{2 r-1} \leq \gamma\left(N_{e}(G)\right) \leq m
$$

Proof. Using Lemma 2.7, since G is an r-regular we have, $N_{e}(G)$ is a $2(r-1)$-regular graph. Lemma 2.1 implies that if graph G consists m edges then, $N_{e}(G)$ is a graph with $2 m$ vertices. Using Lemma 2.9, we have

$$
\gamma\left(N_{e}(G)\right) \geq \frac{2 m}{2 r-1} .
$$

For upper bound, since $\gamma(G) \leq \gamma_{i}(G)$ then, by lemma 2.14(2) we can obtain

$$
\gamma\left(N_{e}(G)\right) \leq \gamma_{i}\left(N_{e}(G)\right) \leq \frac{2 m}{2}=m .
$$

3.2. Total domination and Independent domination.

Theorem 3.3. Let $\gamma_{t}\left(N_{e}(G)\right)$ be the total domination number of the graph $N_{e}(G)$. Then

$$
\gamma_{t}\left(N\left(P_{n}\right)\right)= \begin{cases}n-1 & \text { if } n \equiv 1(\bmod 4) \\ n+1 & \text { if } n \equiv 3(\bmod 4) \\ n & \text { otherwise }\end{cases}
$$

Proof. Using Lemma 2.3, $N_{e}\left(P_{n}\right)=2 P_{n-1}$. Thus, it is sufficient to determine the total domination number for P_{n-1}. Using Lemma 2.10 we consider the following cases.
Case 1: Assume that $n \equiv 1(\bmod 4)$. It means that $n-1 \equiv 0(\bmod 4)$. Thus, $\gamma_{t}\left(P_{n-1}\right)=\frac{n-1}{2}$. So, $\gamma_{t}\left(N_{e}\left(P_{n}\right)\right)=2 \gamma_{t}\left(P_{n-1}\right)=n-1$.
Case 2: If $n \equiv 3(\bmod 4)$, then $n-1 \equiv 2(\bmod 4)$. So, $\gamma_{t}\left(P_{n-1}\right)=$ $\frac{(n-1)+2}{2}=\frac{n+1}{2}$. Therefore, $\gamma_{t}\left(N_{e}\left(P_{n}\right)\right)=2 \gamma_{t}\left(P_{n-1}\right)=n+1$.
Case 3: If $n \equiv 0(\bmod 4)$ or $n \equiv 2(\bmod 4)$, then $n-1 \equiv 3(\bmod$ 4) or $n-1 \equiv 1(\bmod 4)$. Using lemma 2.10. $\gamma_{t}\left(P_{n-1}\right)=\frac{(n-1)+1}{2}=\frac{n}{2}$. Therefore,

$$
\gamma_{t}\left(N_{e}\left(P_{n}\right)\right)=2 \gamma_{t}\left(P_{n-1}\right)=2\left(\frac{n}{2}\right)=n
$$

Theorem 3.4. For any $n \geq 3$,
(1) if n is even, $\gamma_{t}\left(N_{e}\left(C_{n}\right)\right)= \begin{cases}n & \text { if } n \equiv 0(\bmod 4), \\ n+2 & \text { if } n \equiv 2(\bmod 4),\end{cases}$
(2) if n is odd, $\gamma_{t}\left(N_{e}\left(C_{n}\right)\right)=n+1$.

Proof. (1) If n is even, then using Lemma 2.4. $N_{e}\left(C_{n}\right)=2 C_{n}$. So, we consider the total domination number of graph C_{n}. Because, $\gamma\left(N_{e}\left(C_{n}\right)\right)=2 \gamma\left(C_{n}\right)$.
On the other hand, since n is even then, $n \equiv 0(\bmod 4)$ or $n \equiv 2$ $(\bmod 4)$. Using Lemma 2.10 ,

$$
\gamma_{t}\left(N_{e}\left(C_{n}\right)\right)=2 \gamma_{t}\left(C_{n}\right)= \begin{cases}n & \text { if } n \equiv 0(\bmod 4) \\ n+2 & \text { if } n \equiv 2(\bmod 4)\end{cases}
$$

(2) If n is odd, then $n=4 k+1$ or $n=4 k+3$. Using lemma 2.4 $N_{e}\left(C_{n}\right)=C_{2 n}$. So, we consider a cycle of order $2 n$. In this case, $2 n \equiv 2(\bmod 4)$. Thus, using Lemma 2.10

$$
\gamma_{t}\left(N_{e}\left(C_{n}\right)\right)=\gamma_{t}\left(C_{2 n}\right)=\frac{2 n+2}{2}=n+1
$$

Theorem 3.5. For $n \geq 1, \gamma_{t}\left(N_{e}\left(n P_{3}\right)\right)=4 n$.
Proof. Let G be a graph with n components P_{3}. Using Lemma 2.6, $N_{e}\left(n P_{3}\right)=2 n P_{2}$. We consider the total domination number of P_{2}. Since $\gamma_{t}\left(P_{2}\right)=2$, we have

$$
\gamma_{t}\left(N_{e}\left(n P_{3}\right)\right)=2 n \gamma_{t}\left(P_{2}\right)=4 n
$$

Theorem 3.6. Let G be a graph of order n and size of m with $\delta_{G} \geq 4$. Then,

$$
\gamma_{t}\left(N_{e}(G)\right) \leq \frac{6}{7} m
$$

Proof. Using Lemma 2.1, $N_{e}(G)$ has $2 m$ vertices. According to Theorem 2.15. $\delta_{G} \leq \delta_{N_{e}(G)}$. Thus, $\delta_{N_{e}(G)} \geq 4$. Therefore, using Lemma 2.11

$$
\gamma_{t}\left(N_{e}(G)\right) \leq \frac{3}{7}(2 m)=\frac{6}{7} m
$$

Theorem 3.7. Let $\gamma_{i}(G)$ be the independent domination number of G. Then,

$$
\gamma_{i}\left(N_{e}\left(P_{n}\right)\right)=2\left\lceil\frac{n-1}{3}\right\rceil
$$

Proof. According to Lemma 2.3 and Lemma 2.14 (1), we have

$$
\gamma_{i}\left(N_{e}\left(P_{n}\right)\right)=2 \gamma_{i}\left(P_{n-1}\right)=2\left\lceil\frac{n-1}{3}\right\rceil .
$$

Theorem 3.8. For any $n \geq 3$,

$$
\gamma_{i}\left(N_{e}\left(C_{n}\right)\right)= \begin{cases}2\left\lceil\frac{n}{3}\right\rceil & \text { if } n \text { is even } \\ \left\lceil\frac{2 n}{3}\right\rceil & \text { if } n \text { is odd }\end{cases}
$$

Proof. If n is even, then $N_{e}\left(C_{n}\right)=2 C_{n}$. Therefore, $\gamma_{i}\left(N_{e}\left(C_{n}\right)\right)=$ $2 \gamma_{i}\left(C_{n}\right)$. Thus, $\gamma_{i}\left(N_{e}\left(C_{n}\right)\right)=2\left\lceil\frac{n}{3}\right\rceil$.
If n is odd, then $N_{e}\left(C_{n}\right)=C_{2 n}$. On the other hand, by Lemma $2.14(1)$, we have

$$
\gamma_{i}\left(N_{e}\left(C_{n}\right)\right)=\gamma_{i}\left(C_{2 n}\right)=\left\lceil\frac{2 n}{3}\right\rceil
$$

Theorem 3.9. For $n \geq 1$,
(1) $\gamma_{i}\left(N_{e}\left(n K_{2}\right)\right)=n$,
(2) $\gamma_{i}\left(N_{e}\left(n P_{3}\right)\right)=2 n$.

Proof.
(1) For $n \geq 1$, by Lemma 2.5, if $G=n K_{2}$ then, $N_{e}(G)=\bar{K}_{n}$. Using the definition of the independent dominating set of a graph G, we have

$$
\gamma_{i}\left(N_{e}\left(n K_{2}\right)\right)=\gamma_{i}\left(\bar{K}_{n}\right)=n
$$

(2) If $G=n P_{3}$, for any $n \geq 1$, then using Lemma 2.6 and the definition of the independent domination number of G, we can obtain

$$
\gamma_{i}\left(N_{e}\left(n P_{3}\right)\right)=\gamma_{i}\left(2 n P_{3}\right)=2 n \gamma_{i}\left(P_{3}\right)=2 n
$$

Theorem 3.10. If G be a graph without isolated vertex and isolated edge of order n with m edges, then

$$
\gamma_{i}\left(N_{e}(G)\right) \leq m
$$

Proof. Using Lemma 2.1, $N_{e}(G)$ is a bipartite graph of order $2 m$. Using Lemma 2.14 (2) for any bipartite graph $G, \gamma_{i}(G) \leq \frac{n}{2}$. For graph $N_{e}(G)$, we have

$$
\gamma_{i}\left(N_{e}(G)\right) \leq \frac{2 m}{2}=m
$$

3.3. 2-domination and 2-domination polynomial.

Theorem 3.11. For any $n \geq 4$,

$$
\gamma_{2}\left(N_{e}\left(P_{n}\right)\right)= \begin{cases}n & \text { if } n \text { is even } \\ n+1 & \text { if } n \text { is odd }\end{cases}
$$

Proof. According to Lemma 2.3, for $N_{e}\left(P_{n}\right)$, we consider the 2-domination number of P_{n-1}. We have the following cases.
Case 1: If n is even, then $n-1$ is odd. Using Lemma 2.12 $(1), \gamma_{2}\left(P_{n-1}\right)=$ $\frac{(n-1)-1}{2}+1=\frac{n}{2}$. Therefore,

$$
\gamma_{2}\left(N_{e}\left(P_{n}\right)\right)=2 \gamma_{2}\left(P_{n-1}\right)=2\left(\frac{n}{2}\right)=n
$$

Case 2: If n is odd, then $n-1$ is even. According to Lemma 2.12(1), $\gamma_{2}\left(P_{n-1}\right)=\frac{n-1}{2}+1$. So,

$$
\gamma_{2}\left(N_{e}\left(P_{n}\right)\right)=2\left(\frac{n-1}{2}+1\right)=n+1
$$

Theorem 3.12. For any $n \geq 4$,

$$
\gamma_{2}\left(N_{e}\left(C_{n}\right)\right)=n
$$

Proof. If n is odd, then $N_{e}\left(C_{n}\right)=2 C_{n}$. According to Lemma 2.12(2), in this case, $\gamma_{2}\left(C_{n}\right)=\frac{n}{2}$. So,

$$
\gamma_{2}\left(N_{e}\left(C_{n}\right)\right)=2 \gamma_{2}\left(C_{n}\right)=2\left(\frac{n}{2}\right)=n
$$

Now, let n be odd. By lemma $2.4, N_{e}\left(C_{n}\right)$ is a cycle of order $2 n$. So, $2 n$ is even and using Lemma 2.12 (2) we have

$$
\gamma_{2}\left(N_{e}\left(C_{n}\right)\right)=\gamma_{2}\left(C_{2 n}\right)=\frac{2 n}{2}=n
$$

So, the result completes.

Theorem 3.13. Let G be a graph of order n and size of m with the minimum degree at least 2. Then,

$$
\gamma_{2}\left(N_{e}(G)\right) \leq \frac{4}{3} m
$$

Proof. Let the minimum degree of G be $\delta_{G} \geq 2$. Then, by Theorem 2.13 . $\delta_{N_{e}(G)} \geq 2$. Lemma 2.1 implies that $N_{e}(G)$ is a graph of order $2 m$ that m is the number of edges in G. Using Lemma 2.13, we have

$$
\gamma_{2}\left(N_{e}(G)\right) \leq \frac{2}{3}(2 m)=\frac{4}{3} m .
$$

The following theorem is obtained easily from the definition of the 2-domination polynomial from $N_{e}(G)$.
Theorem 3.14. For any $n \geq 5$,
$D_{2}\left(N_{e}\left(P_{n}\right), x\right)=\left\{\begin{array}{lr}x^{n}(1+x)^{n-2} & \text { if } n \text { is even }, \\ x^{n+1}\left[4(1+x)^{n-3}-4(x(1+x))^{\frac{n-3}{2}}+x^{n-3}\right] & \text { if } n \text { is odd } .\end{array}\right.$
Proof. The edge neighborhood graph of path P_{n} is a graph $N_{e}\left(P_{n}\right)$ with two components P_{n-1}. Using Lemma 2.16, it is sufficient to consider the 2-domination polynomial of P_{n-1}. By Lemma 2.17(1) for path P_{n-1}, if $n-1$ is even, then n is odd. So,

$$
D_{2}\left(P_{n-1}, x\right)=x^{\frac{n}{2}}(1+x)^{\frac{n-2}{2}} .
$$

Therefore, we have

$$
\begin{aligned}
D_{2}\left(N_{e}\left(P_{n}\right), x\right) & =D_{2}\left(P_{n-1}, x\right) D_{2}\left(P_{n-1}, x\right) \\
& =\left(x^{\frac{n}{2}}(1+x)^{\frac{n-2}{2}}\right)^{2} \\
& =x^{n}(1+x)^{n-2} .
\end{aligned}
$$

If $n-1$ is odd, then n is even. Thus,

$$
D_{2}\left(N_{e}\left(P_{n}\right), x\right)=x^{\frac{n+1}{2}}\left(2(1+x)^{\frac{n-3}{2}}-x^{\frac{n-3}{2}}\right) .
$$

Therefore,

$$
\begin{aligned}
D_{2}\left(N_{e}\left(P_{n}\right), x\right) & =D_{2}\left(P_{n-1}, x\right) D_{2}\left(P_{n-1}, x\right) \\
& =\left(x^{\frac{n+1}{2}}\right)^{2}\left(2(1+x)^{\frac{n-3}{2}}-x^{\frac{n-3}{2}}\right)^{2} \\
& =x^{n+1}\left[4(1+x)^{n-3}-4(x(1+x))^{\frac{n-3}{2}}+x^{n-3}\right] .
\end{aligned}
$$

Theorem 3.15. For any $n \geq 5$,
$D_{2}\left(N_{e}\left(C_{n}\right), x\right)=\left\{\begin{array}{lr}4 x^{n}(1+x)^{\frac{n}{2}}\left[(1+x)^{\frac{n}{2}}-x^{\frac{n}{2}}\right]+x^{2 n} & \text { if } n \text { is even }, \\ 2(x(1+x))^{n}-x^{2 n} & \text { if } n \text { is odd } .\end{array}\right.$
Proof. If n is even, then by Lemma 2.4, $N_{e}\left(C_{n}\right)=2 C_{n}$. Using Lemma 2.16 and Lemma 2.17(2),

$$
\begin{aligned}
D_{2}\left(N_{e}\left(C_{n}\right), x\right) & =D_{2}\left(C_{n}, x\right) D_{2}\left(C_{n}, x\right) \\
& =\left[x^{\frac{n}{2}}\left(2(1+x)^{\frac{n}{2}}-x^{\frac{n}{2}}\right)\right]^{2} \\
& =x^{n}\left[2(1+x)^{\frac{n}{2}}-x^{\frac{n}{2}}\right]^{2} \\
& =x^{n}\left[4(1+x)^{n}-4(x(1+x))^{\frac{n}{2}}+x^{n}\right] \\
& =4 x^{n}(1+x)^{\frac{n}{2}}\left[(1+x)^{\frac{n}{2}}-x^{\frac{n}{2}}\right]+x^{2 n} .
\end{aligned}
$$

If n is odd, then by Lemma 2.4, $N_{e}\left(C_{n}\right)=C_{2 n}$. Since $N_{e}\left(C_{n}\right)$ is a graph of order even, using Lemma 2.16 and Lemma 2.17(2)

$$
\begin{aligned}
D_{2}\left(N_{e}\left(C_{n}\right), x\right) & =D_{2}\left(C_{2 n}, x\right) \\
& =x^{\frac{2 n}{2}}\left(2(1+x)^{\frac{2 n}{2}}-x^{\frac{2 n}{2}}\right) \\
& =x^{n}\left(2(1+x)^{n}-x^{n}\right) \\
& =2(x(1+x))^{n}-x^{2 n} .
\end{aligned}
$$

References

[1] M. H. Akhbari, F. movahedi and S. V. R. Kulli, Some Parameters of Domination on the Neighborhood Graph, International J.Math. Combin. 4 (2017), 138-150.
[2] S. Alikhani, Y. H. Peng, Introduction to domination polynomial of a graph, Ars. Comb, 114 (2014), 257-266.
[3] D. Amos, On Total Domination in Graphs, Senior Project, University of Houston Downtown, 2012.
[4] M. Chellali, Bounds on the 2-domination number in cactus graphs, Opuscula Math. 26 (2006), 5-12.
[5] E. J. Cockayne, B. Gamble and B. Shepherd, An Upper Bound for the k-Domination Number of a Graph, J. Graph Theory 9 (1985), 533-534.
[6] W. Goddard, M. A. Henning, Independent domination in graphs: a survey and recent results, "Discrete Math. 313 (2013), 839-854.
[7] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker Inc. New York, 1998.
[8] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Domination in Graphs: Advanced Topics, Monographs and Textbooks in Pure and Applied Mathematics 209, Marcel Dekker, Inc., New York, 1998.
[9] M. Kouider, P. D. Vestergaard, Generalized connected domination in graphs. Discret. Math. Theor. Comput. Sci. (DMTCS) 8 (2006), 57-64.
[10] V. R. Kulli, The neighborhood graph of a graph, International J. Fuzzy Math. Arch, 8 (2015), 93-99.
[11] V. R. Kulli, On Edge Neighborhood Graphs, Ann. Mat. Pura Appl. 11(1) (2016), 79-83.
[12] F. Movahedi, M. H. Akhbari and S. Alikhani, The number of 2-dominating sets and 2-domination polynomial of a graph, is submitted, 2019.

[^0]: ${ }^{1}$ Corresponding author: f.movahedi@gu.ac.ir
 ${ }^{2}$ mhakhbari20@gmail.com
 Received: 16 May 2020
 Revised: 02 August 2020
 Accepted: 03 August 2020

