Caspian Journal of Mathematical Sciences (CJMS)
University of Mazandaran, Iran
http://cjms.journals.umz.ac.ir
ISSN: 2676-7260
CJMS. 11(1)(2022), 345-357

k-distance enclaveless number of a graph

Doost Ali Mojdeh ${ }^{1}$ and Iman Masoumi ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran
${ }^{2}$ Department of Mathematics, Tafresh University, Tafresh, Iran

Abstract

For an integer $k \geq 1$, a k-distance enclaveless number (or k-distance B-differential) of a connected graph $G=(V, E)$ is $\Psi^{k}(G)=\max \left\{\left|(V-X) \cap N_{k, G}(X)\right|: X \subseteq V\right\}$. In this paper, we establish upper bounds on the k-distance enclaveless number of a graph in terms of its diameter, radius and girth. Also, we prove that for connected graphs G and H with orders n and m respectively, $\Psi^{k}(G \times H) \leq m n-n-m+\Psi^{k}(G)+\Psi^{k}(H)+1$, where $G \times H$ denotes the direct product of G and H. In the end of this paper, we show that the k-distance enclaveless number $\Psi^{k}(T)$ of a tree T on $n \geq k+1$ vertices and with n_{1} leaves satisfies inequality $\Psi^{k}(T) \leq \frac{k\left(2 n-2+n_{1}\right)}{2 k+1}$ and we characterize the extremal trees.

Keywords: k-distance enclaveless number, diameter, radius, girth, direct product.

2020 Mathematics subject classification: 05C69.

1. Introduction

Distance in graphs is a fundamental concept in graph theory. Let G be a connected graph. The distance between two vertices u and v in G, denoted $d_{G}(u, v)$, is the length of a shortest (u, v)-path in G. The eccentricity $\operatorname{ecc}_{G}(v)$ of v in G is the distance between v and a vertex farthest from v in G. The minimum eccentricity among all vertices of

[^0]G is the radius of G, denoted by $\operatorname{rad}(G)$, while the maximum eccentricity among all vertices of G is the diameter of G, denoted by $\operatorname{diam}(G)$. Thus, the diameter of G is the maximum distance among all pairs of vertices of G. A vertex v with $\operatorname{ecc}_{G}(v)=\operatorname{diam}(G)$ is called a peripheral vertex of G. A diametral path in G is a shortest path in G whose length is equal to the diameter of the graph. Thus, a diametral path is a path of length $\operatorname{diam}(G)$ joining two peripheral vertices of G. If S is a set of vertices in G, then the distance, $d_{G}(v, S)$, from a vertex v to the set S is the minimum distance from v to a vertex of S; that is, $d_{G}(v, S)=\min \left\{d_{G}(u, v): u \in S\right\}$. In particular, if $v \in S$, then $d(v, S)=0$. Enclaveless number (B-differential) of graphs is also very well studied in graph theory. An enclaveless number (B-differential) of a set X in a graph G is $\Psi(X)=|b d(X)|=|B(X)|=\left|(V-X) \cap N_{G}(X)\right|$ so that $B(X)$ is called boundary of X. The enclaveless number $(B-$ differential) of G, denoted by $\Psi(G)$, is $\Psi(G)=\max \{|B(X)|: X \subseteq V\}$. In this paper, we start the study of k-distance enclaveless number in graphs which combines the concepts of both distance and enclaveless number in graphs [4]. Let $k \geq 1$ be an integer and let G be a graph. A k-distance enclaveless number (k-distance B-differential) of a set X in a graph G is $\Psi^{k}(X)=\left|b d^{k}(X)\right|=\left|B^{k}(X)\right|=\left|(V-X) \cap N_{k, G}(X)\right|$ so that $B^{k}(X)$ is called k-boundary of X. The k-distance enclaveless number (k-distance B-differential) of G, denoted by $\Psi^{k}(G)$, is $\Psi^{k}(G)=$ $\max \left\{\left|B^{k}(X)\right|: X \subseteq V\right\}$. A set D is called k-distance enclaveless set of G if $B^{k}(D)=V-D$. A set D is called maximum k-distance enclaveless set of G if $\Psi^{k}(G)=\left|B^{k}(D)\right|$. When $k=1$, the 1-distance enclaveless number of G is precisely the enclaveless number of G; that is, $\Psi^{1}(G)=\Psi(G)$. In 1977, Slater [6] introduced the concept of a enclaveless set (or B-differential set) in a graph.

Let $G=(V, E)$ be a simple undirected graph with the set of vertices $V=V(G)$ and the set of edges $E=E(G)$. We refer the reader to [1], [7] for any terminology and notation not here in. We denote minimum degree of a graph G with $\delta(G)$ and maximum degree with $\Delta(G)$. The open neighborhood of a vertex $v \in V$ is the set $N(v)=\{u: u v \in E(G)\}$, while the closed neighborhood of a vertex $v \in V$ is $N[v]=N(v) \cup\{v\}$. The open neighborhood of a set $S \subseteq V$ is the set $N(S)=\cup_{v \in S} N(v)$. The closed neighborhood of a set $S \subseteq V$ is the set $N[S]=N(S) \cup S$. Let E_{v} be the set of edges incident with v in G that is, $E_{v}=\{u v \in E(G): u \in N(v)\}$. We denote the degree of v by $\operatorname{deg}_{G}(v)=\left|E_{v}\right|$.

Let k be a positive integer. For a vertex $v \in V(G)$, the open k neighborhood $N_{k, G}(v)$ is the set $\{u \in V(G): u \neq v$ and $d(u, v) \leq k\}$
and the closed k-neighborhood $N_{k, G}[v]$ is the set $N_{k, G}(v) \cup\{v\}$. The open k-neighborhood $N_{k, G}(S)$ of a set $S \subseteq V$ is the set $\cup_{v \in S} N_{k, G}(v)$, and the closed k-neighborhood $N_{k, G}[S]$ of a set $S \subseteq V$ is the set $N_{k, G}(S) \cup S$. The k-degree of a vertex v is defined as $\delta_{k, G}(v)=\operatorname{deg}_{k, G}(v)=\left|N_{k, G}(v)\right|$. The minimum and maximum k-degree of a graph G are denoted by $\delta_{k}(G)$ and $\Delta_{k}(G)$, respectively. For a non-empty subset $S \subseteq V$, and any vertex $v \in V$ we denote by $N_{k, S}(v)$ the set of k-neighbors v has in S : $N_{k, S}(v):=\{u \in S: d(u, v) \leq k\}$ and $\delta_{k, S}(v)=\left|N_{k, S}(v)\right|$. The graph G is called distance k-regular if $\delta_{k}(G)=\Delta_{k}(G)$. The k-th power G^{k} of a graph G is the graph with vertex set $V\left(G^{k}\right)=V(G)$ and edge set $E\left(G^{k}\right)=$ $\{x y: d(x, y) \leq k\}$. Now clearly, we have $N_{k, G}(v)=N_{1, G^{k}}(v)=N_{G^{k}}(v)$, $N_{k, G}[v]=N_{1, G^{k}}[v]=N_{G^{k}}[v], \operatorname{deg}_{k, G}(v)=\operatorname{deg}_{1, G^{k}}(v)=\operatorname{deg}_{G^{k}}(v)$, $\delta_{k}(G)=\delta_{1}\left(G^{k}\right)=\delta\left(G^{k}\right)$ and $\Delta_{k}(G)=\Delta_{1}\left(G^{k}\right)=\Delta\left(G^{k}\right)$. A vertex v is called k-adjacent to (or k-neighbor with) a vertex w if $d(v, w)=k$. A vertex of degree one is called a leaf and the set of leaves of a graph G is denoted by $\Omega(G)$. The number of leaves $\Omega(G)$ will be denoted by $n_{1}(G)$. For a tree T and an edge $x y \in E(T)$, let T_{x} and T_{y} denote the components of $T-x y$ in which the vertices x and y belong to T_{x} and T_{y}, respectively. A complete bipartite graph $K_{m, n}$ with partite sets X, Y such that $|X|=m$ and $|Y|=n$. If $m=1$, then $K_{1, n}$ is called an star with $n+1$ vertices. The edge subdivision in a graph G is the following operation; remove one edge $e=x y$ of G and add a new vertex z and the edges $x z$ and $z y$. A k-times subdivided star $S S_{t}^{k}$ is obtained from a star $K_{1, t}$ by subdividing each edge by exactly k vertices.

This paper is organized as follows: In Section 2 we study some elementary results on k-distance enclaveless number of G. We establish upper bounds on the k-distance enclaveless number of a graph in terms of its diameter, radius and girth in Section 3. Also, we prove that for the connected graphs G and H with orders n and m respectively, $\Psi^{k}(G \times H) \leq m n-n-m+\Psi^{k}(G)+\Psi^{k}(H)+1$ in Section 4. Finally, in Section 5, we show that the k-distance enclaveless number $\Psi^{k}(T)$ of a tree T on $n \geq k+1$ vertices and with n_{1} leaves satisfies inequality $\Psi^{k}(T) \leq \frac{k\left(2 n-2+n_{1}\right)}{2 k+1}$ and we characterize the extremal trees.

2. Preliminary results

In order to prove recent inequality, the techniques of article [3] have been used. It is well known that, if H is a subgraph of G and u, v be two vertices in G, then $d_{G}(u, v) \leq d_{H}(u, v)$ and $N_{k, H}(u) \subseteq N_{k, G}(u)$. Therefore we have following observation.
Observation 2.1. For $k \geq 1$, if H is a spanning subgraph of a graph G, then $\Psi^{k}(G) \leq \Psi^{k}(H)$.

The following theorem shows that the study of k-distance enclaveless set of a graph G is lead to the study of k-distance enclaveless set of a spanning tree T of G.

Theorem 2.2. For $k \geq 1$, every connected graph G has a spanning tree T such that $\Psi^{k}(T)=\Psi^{k}(G)$.

Proof. Let $D=\left\{v_{1}, \ldots, v_{t}\right\}$ be a maximum k-distance enclaveless set of G. Thus, $|D|=t=\Psi^{k}(G)$. We now partition the vertex set $V(G)$ into t sets V_{1}, \ldots, V_{t} as follows. Initially, we let $V_{i}=\left\{v_{i}\right\}$ for all $i \in[t]$. We then consider sequentially the vertices not in D. For each vertex $v \in V(G)-D$, we select a vertex $v_{i} \in D$ at minimum distance from v in G and add the vertex v to the set V_{i}. We note that if $v \in V(G)-D$ and $v \in V_{i}$ for some $i \in[t]$, then $d_{G}\left(v, v_{i}\right)=d_{G}(v, D)$, although the vertex v_{i} is not necessarily the unique vertex of D at minimum distance from v in G. Further, since D is a k-distance enclaveless set of G, we note that $d_{G}\left(v, v_{i}\right) \leq k$. For each $i \in[t]$, let T_{i} be a spanning tree of $G\left[V_{i}\right]$ that is distance preserving from the vertex v_{i}; that is, $V\left(T_{i}\right)=V_{i}$ and for every vertex $v \in V\left(T_{i}\right)$, we have $d_{T_{i}}\left(v, v_{i}\right)=d_{G}\left(v, v_{i}\right)$. We now let T be the spanning tree of G obtained from the disjoint union of the t trees T_{1}, \ldots, T_{t} by adding $t-1$ edges of G. We remark that these added $t-1$ edges exist as G is connected. We now consider an arbitrary vertex, v say, of G. The vertex $v \in V_{i}$ for some $i \in[t]$. Thus, $d_{T}\left(v, v_{i}\right) \leq d_{T_{i}}\left(v, v_{i}\right)=d_{G}\left(v, v_{i}\right)=d_{G}(v, D) \leq k$. Therefore, the set D is a k-distance enclaveless set of T, and so $\Psi^{k}(T) \leq|D|=\Psi^{k}(G)$. However, by Observation 2.1, $\Psi^{k}(G) \leq \Psi^{k}(T)$. Consequently, $\Psi^{k}(T)=$ $\Psi^{k}(G)$.

We shall also need the following lemma.

Lemma 2.3. Let G be a connected graph that is not a tree, and let C be a shortest cycle in G. If v is a vertex of G outside of C that $\mid B^{k}(\{v\}) \cap$ $V(C) \mid \geq 2 k$, then there exist two vertices $u, w \in V(C) \cup B^{k}(\{v\})$ such that a shortest (u, v)-path does not contain w and a shortest (v, w)-path does not contain u.

Proof. Since v is not on C, it has a distance of at least 1 to every vertex of C. Let u be a vertex of C at minimum distance from v in G. We put $Q=V(C) \cap B^{k}(\{v\})$. Thus, $Q \subseteq V(C)$ and, by assumption, $|Q| \geq 2 k$. Among all vertices in Q, let $w \in Q$ be chosen to have maximum distance from u on the cycle C. Since there are $2 k-1$ vertices within distance $k-1$ from u on C, the vertex w has distance at least k from u on the cycle C. Let P_{u} be a shortest (u, v)-path and let P_{w} be a shortest (v, w)-path in G.

If $w \in V\left(P_{u}\right)$, then $d_{G}(u, w)<d_{G}(u, v) \leq k$, contradicting our choice of the vertex u. Therefore, $w \notin V\left(P_{u}\right)$. Suppose that $u \in V\left(P_{w}\right)$. Since C is a shortest cycle in G, the distance between u and w on C is the same as the distance between u and w in G. Thus, $d_{G}(u, w)=d_{C}(u, w)$, implying that $d_{G}(v, w)=d_{G}(v, u)+d_{G}(u, w) \geq 1+d_{G}(u, w)=1+d_{C}(u, w) \geq 1+k$, a contradiction. Therefore, $u \notin V\left(P_{w}\right)$.

3. Upper bound of the k-distance enclaveless in a graph

In this section we provide various upper bounds on the k-distance enclaveless number for general graphs.

Theorem 3.1. For $k \geq 1$, if G is a connected graph with diameter d, then

$$
\Psi^{k}(G) \leq \frac{2 k n+n-d-1}{2 k+1} .
$$

This bound is sharp.
Proof. Let $P: u_{0} u_{1} \ldots u_{d}$ be a diametral path in G, joining two peripheral vertices $u=u_{0}$ and $v=u_{d}$ of G. Thus, the length of P is $\operatorname{diam}(G)=$ d. We claim that for every vertex $v \in G,\left|V(P) \cap B^{k}(\{v\})\right| \leq 2 k+1$. Suppose, to the contrary, that there exists a vertex $q \in V(G)$ so that we have, $\left|V(P) \cap B^{k}(\{q\})\right| \geq 2 k+2$. (Possibly, $q \in V(P)$.) Now we put $Q=V(P) \cap B^{k}(\{q\})$. Then $|Q| \geq 2 k+2$. Let i and j be the smallest and greatest integers respectively, such that $u_{i}, u_{j} \in Q$. We note that $Q \subseteq\left\{u_{i}, u_{i+1}, \ldots, u_{j}\right\}$. Thus, $2 k+2 \leq|Q| \leq j-i+1$. Since P is a shortest (u, v)-path in G, we therefore note that $d_{G}\left(u_{i}, u_{j}\right)=$ $d_{P}\left(u_{i}, u_{j}\right)=j-i \geq 2 k+1$. Let P_{i} and P_{j} be shortest (u, q)-path and (q, v)-path in G. Since $u_{i}, u_{j} \in B^{k}(\{q\})$, both paths P_{u} and P_{v} have length at most k. Therefore, the $\left(u_{i}, u_{j}\right)$-path obtained by the following path P_{i} from u_{i} to q, and then proceeding along the path P_{j} from q to u_{j}, has length at most $2 k$, implying that $d_{G}\left(u_{i}, u_{j}\right) \leq 2 k$, a contradiction. Therefore, for every vertex $v \in V(G),\left|V(P) \cap B^{k}(v)\right| \leq 2 k+1$.
Let S be a maximum k-distance enclaveless set of G. Thus, $|S|=\Psi^{k}(G)$. For every vertex $x \in S$, we have $\left|V(P) \cap B^{k}(\{x\})\right| \leq 2 k+1$, and so $\left|V(P) \cap B^{k}(S)\right| \leq(n-|S|)(2 k+1)$. However, since S is a k-distance enclaveless set of G and for any vertex $y \in P, y \in B^{k}(S)$, thus we have, $\left|B^{k}(S) \cap V(P)\right|=d+1$. Therefore, $(n-|S|)(2 k+1) \geq d+1$, or, equivalently, $\Psi^{k}(G)=|S| \leq(2 k n+n-d-1) /(2 k+1)$.

For seeing the sharpness of bound, let G be a path, $v_{1} v_{2} \ldots v_{n}$, of order $n=\ell(2 k+1)$ for some $\ell \geq 1$. Let $d=\operatorname{diam}(G)$, and so $d=$ $n-1=\ell(2 k+1)-1$. It is clear $\Psi^{k}(G) \leq \frac{(2 k n+n-d-1)}{2 k+1}=2 k \ell=n-\ell$.

Figure 1. For $n=4, V_{2}=V_{3}=V_{4}=K_{2}$

The set

$$
S=\cup_{i=0}^{\ell-1}\left\{v_{v_{k+1+i(2 k+1)}}\right\}
$$

is a k-distance enclaveless set of G, and so $\Psi^{k}(G) \geq|S|=n-\ell$. Consequently, $\Psi^{k}(G)=n-\ell=\frac{(2 k n+n-d-1)}{2 k+1}$. We state this formally as follows.

For the family of the graphs we obtain the bound in Theorem 3.1. For this, let $P=v_{1} v_{2} \ldots v_{n}$ be a path. By replacing each vertex v_{i}, for $2 \leq i \leq n-1$, on the path with a clique (clique V_{i} corresponds to vertex v_{i}) of size at least $\delta \geq 1$, and adding all edges between v_{1} and vertices in V_{2}, adding all edges between v_{n} and vertices in V_{n-1}, and adding all edges between vertices in V_{i} and V_{i+1} for $2 \leq i \leq n-2$, we obtain a graph with minimum degree δ achieving the upper bound of Theorem 3.1, see Figure 1.

In general, by applying Theorem 3.1, the k-distance enclaveless number of a cycle C_{n} or path P_{n} of order $n \geq 3$, are easily obtained.

Proposition 3.2. For $k \geq 1$ and $n \geq 3, \Psi^{k}\left(P_{n}\right)=\Psi^{k}\left(C_{n}\right)=n-$ $\left\lceil\frac{n}{2 k+1}\right\rceil$.

As a consequence of Theorem 3.1, we have the following upper bound on the k-distance enclaveless number of a graph in terms of its radius.

Corollary 3.3. For $k \geq 1$, if G is a connected graph with radius r, then

$$
\Psi^{k}(G) \leq \frac{2 k n+n-2 r}{2 k+1} .
$$

This bound is sharp.
Proof. By Theorem 2.2, the graph G has a spanning tree T such that $\Psi^{k}(T)=\Psi^{k}(G)$. Since adding edges to a graph cannot increase its
radius, $\operatorname{rad}(G) \leq \operatorname{rad}(T)$. Since T is a tree, we note that $\operatorname{diam}(T) \geq$ $2 \operatorname{rad}(T)-1$. Applying Theorem 3.1 to the tree T, we have that

$$
\Psi^{k}(G)=\Psi^{k}(T) \leq \frac{2 k n+n-d-1}{2 k+1} \leq \frac{2 k n+n-2 r+1-1}{2 k+1}=\frac{2 k n+n-r}{2 k+1}
$$

For seeing the upper bound, let G be a path P_{n} of order $n=2 \ell(2 k+1)$ for some integer $\ell \geq 1$. Let $d=\operatorname{diam}(G)$ and let $r=\operatorname{rad}(G)$, and so $d=2 \ell(2 k+1)-1$ and $r=\ell(2 k+1)$. In particular, we note that $d=2 r-1$. By Theorem 3.1, $\Psi^{k}(G)=\frac{2 k n+n-d-1}{2 k+1}=\frac{2 k n+n-2 r}{2 k+1}$. Then by replacing each internal vertices on the path with a clique of size at least $\delta \geq 1$, we can obtain a graph with minimum degree δ achieving the upper bound.

Theorem 3.4. For $k \geq 1$, if G is a connected graph with girth g, then

$$
\Psi^{k}(G) \leq \frac{2 k n+n-g}{2 k+1}
$$

Proof. If $g \leq 2 k+1$, then upper bound holds by using Proposition 3.2 and Corollary 3.3. Let $g \geq 2 k+2$, and C be a shortest cycle in G, of length g. We note that the distance between two vertices in C is exactly equal to the distance between them in G. Now we consider the following two cases, depending on the value of the girth of graphs.

Case 1. $2 k+2 \leq g \leq 4 k+2$. In this case, we show that $\Psi^{k}(G) \leq$ $n-\left\lceil\frac{g}{2 k+1}\right\rceil=n-2$. Suppose to the contrary, that $\Psi^{k}(G)=n-1$. Then, G contains a vertex v that is within distance k from every vertex of G. In particular, $d(u, v) \leq k$ for every vertex $u \in V(C)$. If $v \in V(C)$, then, since C is a shortest cycle in G, we note that $d_{C}(u, v)=d_{G}(u, v) \leq k$ for every vertex $u \in V(C)$. However, the lower bound condition on the girth, namely $g \geq 2 k+2$, implies that no vertex on the cycle C is within distance k in C from every vertex of C, a contradiction. Therefore, $v \notin V(C)$. By Lemma 2.3, there exist two vertices $u, w \in V(C)$ such that a shortest (v, u)-path does not contain w and a shortest (v, w)-path does not contain u. We show that, we can choose u and w to be adjacent vertices on C. Let w be a vertex of C at maximum distance, say d_{w}, from v in G. Let w_{1} and w_{2} be the two neighbors of w on the cycle C. If $d_{G}\left(v, w_{1}\right)=d_{w}$, then we can take $u=w_{1}$, and the desired property (that a shortest (v, u)-path does not contain w and a shortest (v, w)-path does not contain u) holds. Hence we may assume that $d_{G}\left(v, w_{1}\right) \neq d_{w}$. By our choice of the vertex w, we note that $d_{G}\left(v, w_{1}\right) \leq d_{w}$, implying that $d_{G}\left(v, w_{1}\right)=d_{w}-1$. Similarly, we may assume that $d_{G}\left(v, w_{2}\right)=d_{w}-1$. Let P_{w} be a shortest (v, w)-path. At most one of w_{1} and w_{2} belong to the path P_{w}. Renaming w_{1} and w_{2}, if necessary, we may assume that
w_{1} does not belong to the path P_{w}. In this case, letting $u=w_{1}$ and letting P_{u} be a shortest (v, u)-path, we note that $w \notin V\left(P_{u}\right)$. As observed earlier, $u \notin V\left(P_{w}\right)$. This shows that u and w can indeed be chosen to be neighbors on C. Let x be the last vertex in common with the (v, u)-path P_{u}, and the (v, w)-path, P_{w}. Possibly, $x=v$. Then, the cycle obtained from the (x, u)-section of P_{u} by proceeding along the edge $u w$ to w, and then the following (w, x)-section of P_{w} back to x, has length at most $d_{G}(v, u)+1+d_{G}(v, w) \leq 2 k+1$, contradicting the fact that the girth $g \geq 2 k+2$. Therefore, $\Psi^{k}(G) \leq n-2$, as desired.

Case 2. $g \geq 4 k+3$. Let S be a maximum k-distance enclaveless set of G, and so $|S|=\Psi^{k}(G)$. Let $K=S \cap V(C)$ and let $L=S-V(C)$. Thus, $S=K \cup L$. If $L=\emptyset$, then $S=K$ and the set K is a k-distance enclaveless set of C, implying by Proposition 3.2, that $\Psi^{k}(G)=|S|=$ $|K| \leq \Psi^{k}\left(C_{g}\right)=n-\left\lceil\frac{g}{2 k+1}\right\rceil$, and the theorem holds. Hence we may assume that $|L| \geq 1$. We wish to show that $|K|+|L|=|S| \leq n-\left\lceil\frac{g}{2 k+1}\right\rceil$. Suppose to the contrary that,

$$
|K| \geq n-\left\lceil\frac{g}{1+2 k}\right\rceil+1-|L| .
$$

As observed earlier, the distance between two vertices in $V(C)$ is exactly the same in C as in G. This implies that each vertex of K (recall that $K \subseteq V(C))$ is within distance k from exactly $2 k+1$ vertices of C. Thus, the set $B^{k}(K) \cap V(C)$ has at least $|K|(2 k+1)$ vertices where

$$
\begin{gathered}
|K|(2 k+1) \geq\left(n-\left\lceil\frac{g}{1+2 k}\right\rceil+1-|L|\right)(2 k+1) \geq \\
\left(n-\frac{g+2 k}{2 k+1}+1-|L|\right)(2 k+1)=2 k n+n-g+1-|L|(2 k+1) .
\end{gathered}
$$

Thus, clearly we have $|K|(2 k+1) \geq n-g+1-|L|(2 k+1)$. Consequently, since $\left|V\left(C^{c}\right)\right|=n-g$, there are at most $-1+|L|(2 k+1)$ vertices of $V(C)^{c}$ that do not belong to set $B^{k}(K)$, and so they must belong to set $B^{k}(L)$. Thus, by the Pigeonhole Principle, there is at least one vertex, say v, in L that $\left|B^{k}(\{v\}) \cap V(C)\right| \geq 2 k$. By Lemma 2.3 , there exist two vertices $u, w \in V(C)$ that are both $u, w \in B^{k}(\{v\})$ and such that a shortest (u, v)-path, P_{u} say, (from u to v) does not contain w and a shortest (w, v)-path, P_{w} say, (from w to v) does not contain u. Analogously as in the proof of Lemma 2.3, we can choose the vertex u to be a vertex of C at minimum distance from v in G. Thus, the vertex u is the only vertex on the cycle C that belongs to the path P_{u}. Combining the paths P_{u} and P_{w} produces a (u, w)-walk of length at most $d_{G}(u, v)+d_{G}(v, w) \leq 2 k$, implying that $d_{G}(u, w) \leq 2 k$. Since C is a shortest cycle in G, we therefore have that $d_{C}(u, w)=d_{G}(u, w) \leq 2 k$. The cycle C yields two (w, u)-paths. Let $P_{w u}$ be the (w, u)-path on the cycle C of shorter length
(starting at w and ending at u). Thus, $P_{w u}$ has length $d_{C}(u, w) \leq 2 k$. Note that the path $P_{w u}$ belongs entirely on the cycle C. Let $x \in V(C)$ be the last vertex in common with the (w, v)-path, P_{w}, and the (w, u) path, $P_{w u}$. Possibly, $x=w$. However, note that $x \neq u$ since $u \notin V\left(P_{w}\right)$. Let y be the first vertex in common with the (x, v)-subsection of the path P_{w} and with the (u, v)-path P_{u}. Possibly, $y=v$. However, note that $y \neq x$ since $x \notin V\left(P_{u}\right)$ and $V\left(P_{u}\right) \cap V(C)=\{u\}$. Using the (x, u) subsection of the path $P_{w u}$, the (x, y)-subsection of the path P_{w}, and the (u, y)-subsection of the path P_{u} produces a cycle in G of length at most $d_{G}(u, v)+d_{G}(w, v)+d_{G}(u, w) \leq k+k+2 k=4 k$, contradicting the fact that the girth $g \geq 4 k+3$. Therefore, $\Psi^{k}(G)=|S|=|K|+|L|$, as desired.

4. Direct Product Graphs

The direct product graph, $G \times H$, of graphs G and H is the graph with vertex set $V(G) \times V(H)$ and with edges $\left(g_{1}, h_{1}\right)\left(g_{2}, h_{2}\right)$, where $g_{1} g_{2} \in E(G)$ and $h_{1} h_{2} \in E(H)$. Let $A \subseteq V(G \times H)$. The projection of A onto G is defined as $P_{G}(A)=\{g \in V(G):(g, h) \in A$ for some $h \in$ $V(H)\}$. Similarly, the projection of A onto H is defined as $P_{H}(A)=$ $\{h \in V(H):(g, h) \in A$ for some $g \in V(G)\}$. For a detailed discussion on direct product graphs, we refer the reader to the handbook on graph products [2]. Recall that for every graph $G, \Psi^{1}(G)=\Psi(G)$.

Lemma 4.1. Let G and H be connected graphs. If D is a k-distance enclaveless set of $G \times H$, then $P_{G}(D)$ is a k-distance enclaveless set of G and $P_{H}(D)$ is a k-distance enclaveless set of H.

Proof. Let $D \subseteq V(G \times H)$ be a k-distance enclaveless set of $G \times H$. We firstly show that $P_{G}(D)$ is a k-distance enclaveless set of G. Or, equivalently, we have to show that $B^{k}\left(P_{G}(D)\right)=V(G)-P_{G}(D)$. If $g \in B^{k}\left(P_{G}(D)\right)$, then we have clearly, $0<d_{G}\left(g, P_{G}(D)\right) \leq k$. Thus, $g \notin P_{G}(D)$ and then $B^{k}\left(P_{G}(D)\right) \subseteq V(G)-P_{G}(D)$. Hence, we assume that $g \in V(G)-P_{G}(D)$. Let h be an arbitrary vertex in $V(H)$. Since $g \notin$ $P_{G}(D)$, then $(g, h) \notin D$. However, the set D is a k-distance enclaveless set of $G \times H$, and so $(g, h) \in B^{k}(D)$; that is, $d_{G \times H}((g, h), D) \leq k$. Let $\left(g_{0}, h_{0}\right),\left(g_{1}, h_{1}\right), \ldots,\left(g_{r}, h_{r}\right)$ be a shortest path from (g, h) to D in $G \times H$, where $(g, h)=\left(g_{0}, h_{0}\right)$ and $\left(g_{r}, h_{r}\right) \in D$. By assumption, $1 \leq r \leq k$. For $i \in\{0, \ldots, r-1\}$, the vertices $\left(g_{i}, h_{i}\right)$ and $\left(g_{i+1}, h_{i+1}\right)$ are adjacent in $G \times H$. Hence, by the definition of the direct product graph, the vertices g_{i} and g_{i+1} are adjacent in G, implying that $g_{0} g_{1} \ldots g_{r}$ is a $\left(g_{0}, g_{r}\right)$-walk in G of length r. This in turn implies that there is a $\left(g_{0}, g_{r}\right)$-path in G of length r. Recall that $g=g_{0}$ and $1 \leq r \leq k$. Since $\left(g_{r}, h_{r}\right) \in D$, the vertex $g_{r} \in P_{G}(D)$. Hence, there is a path from g to a vertex of $P_{G}(D)$
in G of length at most k. Therefore, $g \in B^{k}\left(P_{G}(D)\right)$. Analogously, the set $P_{H}(D)$ is a k-distance enclaveless set of H.
Theorem 4.2. If G and H are connected graphs of the orders n and m, respectively. Then

$$
\Psi^{k}(G \times H) \leq m n-n-m+\Psi^{k}(G)+\Psi^{k}(H)+1 .
$$

Proof. Let $D \subseteq V(G \times H)$ be a maximum k-distance enclaveless set of $G \times H$. Suppose, to the contrary, that $|D| \geq m n-n-m+\Psi^{k}(G)+$ $\Psi^{k}(H)+2$. We will refer to this inequality as (*). By Lemma 4.1, $P_{G}(D)$ is a k-distance enclaveless set of G and $P_{H}(D)$ is a k-distance enclaveless set of H. Therefore, we have that $|D| \leq n-\left|P_{G}(D)\right| \leq \Psi^{k}(G)$ and $|D| \leq m-\left|P_{H}(D)\right| \leq \Psi^{k}(H)$. If $\Psi^{k}(G)=n-1$, then by $(*)$, $\Psi^{k}(H) \geq|D| \geq m n-m+1+\Psi^{k}(H)$, a contradiction. Therefore, $\Psi^{k}(G) \leq n-2$. Analogously, $\Psi^{k}(H) \leq n-2$. Recall that $n-\left|P_{G}(D)\right| \leq$ $\Psi^{k}(G)$. We now remove vertices from the set $P_{G}(D)$ until we obtain a set, D_{G} say, of cardinality exactly $n-1-\Psi^{k}(G)$. Thus, D_{G} is a proper subset of $P_{G}(D)$ of cardinality $n-1-\Psi^{k}(G)$. Since D_{G} is not a k-distance enclaveless set of G, there exists a vertex $g \in V(G)$ such that $g \notin B^{k}\left(D_{G}\right)$; that is, $d_{G}\left(g, D_{G}\right)>k$. Let $D_{G}=\left\{g_{1}, \ldots, g_{t}\right\}$, where $t=n-1-\Psi^{k}(G) \geq 1$. For each $i \in[t]$, there exists a (not necessarily unique) vertex $h_{i} \in V(H)$ such that $\left(g_{i}, h_{i}\right) \in D$ (since $D_{G} \subseteq P_{G}(D)$). We now consider the set $D_{0}=\left\{\left(g_{1}, h_{1}\right), \ldots,\left(g_{t}, h_{t}\right)\right\}$, and note that $D_{0} \subset D$ and $\left|D_{0}\right|=n-1-\Psi^{k}(G)$. By $\left(^{*}\right)$, we note that

$$
\begin{gathered}
m-\left|P_{H}\left(D-D_{0}\right)\right| \geq\left|D-D_{0}\right|=|D|-\left|D_{0}\right| \geq \\
\left(m n-n-m+\Psi^{k}(G)+\Psi^{k}(H)+2\right)-\left(n-1-\Psi^{k}(G)\right) \\
=m n-2 n-m+3+2 \Psi^{k}(G)+\Psi^{k}(H)>\Psi^{k}(H)
\end{gathered}
$$

Hence, there exists a vertex $h \in V(H)$ such that $h \notin B^{k}\left(P_{H}\left(D-D_{0}\right)\right)$; that is, $d_{H}\left(h, P_{H}\left(D-D_{0}\right)\right)>k$. We now consider the vertex $(g, h) \in$ $V(G \times H)$. Since D is a k-distance enclaveless set of $G \times H$, then there exists the vertex $\left(g^{*}, h^{*}\right) \in D$ such that $(g, h) \in B^{k}\left\{\left(g^{*}, h^{*}\right)\right\}$. A similar proof as the proof of Lemma 4.1 shows that $d_{G}\left(g, g^{*}\right) \leq k$ and $d_{H}\left(h, h^{*}\right) \leq k$. If $\left(g^{*}, h^{*}\right) \in D-D_{0}$, then $h^{*} \in P_{H}\left(D-D_{0}\right)$, implying that $d_{H}\left(h, P_{H}\left(D-D_{0}\right)\right) \leq d_{H}\left(h, h^{*}\right) \leq k$, a contradiction. Hence, $\left(g^{*}, h^{*}\right) \in D_{0}$. This implies that $g^{*} \in P_{G}\left(D_{0}\right)=D_{G}$. Thus, $d_{G}\left(g, D_{G}\right) \leq d_{G}\left(g, g^{*}\right) \leq k$, contradicting the fact that $d_{G}\left(g, D_{G}\right)>k$. Therefore, $\left(^{*}\right.$) inequality that $|D| \geq m n-n-m+\Psi^{k}(G)+\Psi^{k}(H)+2$ must be false, and the result follows.

5. Upper bound for k-distance enclaveless number of a tree

In this section we study the upper bound of k-distance enclaveless number of trees.

Theorem 5.1. Let T be a tree of order $n(T) \geq k+1$ and with $n_{1}(T)$ leaves. Then

$$
k n_{1}(T) \geq 2 k-2 k n(T)+(2 k+1) \Psi^{k}(T)
$$

Proof. We use induction on n, the order of a tree. The result is trivial for a tree of order $k+1$ due to $\operatorname{diam}(T) \leq k$ or equivalently $\Psi^{k}(T)=n-1$. Let T be a tree of order $n>k+1, \operatorname{diam}(T) \geq 2 k+1$ and assume that $k n_{1}\left(T^{\prime}\right) \geq 2 k-2 k n\left(T^{\prime}\right)+(2 k+1) \Psi^{k}\left(T^{\prime}\right)$ for each tree T^{\prime} with $k+1<n\left(T^{\prime}\right) \leq n-1$. Let D be a maximum k-distance enclaveless set of T having property that, let $P=v_{0} v_{1} \cdots v_{l}$ be a longest path in T and let $T^{\prime}=T-\left\{v_{0}\right\}$ be the subtree of T. Clearly, we have $l \geq 2 k+1$. Without loss of generality we may assume that P is chosen in such a way that $d_{k, T}\left(v_{k}\right)$ is as large as possible. We consider two cases: $d_{k, T}\left(v_{k}\right)>k+1$ or $d_{k, T}\left(v_{k}\right)=k+1$.
Case 1. $d_{k, T}\left(v_{k}\right)>k+1$.

In T^{\prime} we have $k n_{1}\left(T^{\prime}\right) \geq 2 k-2 k n\left(T^{\prime}\right)+(2 k+1) \Psi^{k}\left(T^{\prime}\right)$ (by induction), and as $n_{1}\left(T^{\prime}\right)=n_{1}(T)-1, n\left(T^{\prime}\right)=n(T)-1$ and $\Psi^{k}(T)=\Psi^{k}\left(T^{\prime}\right)+1$, therefore, $k\left(n_{1}(T)-1\right) \geq 2 k-2 k(n(T)-1)+(2 k+1)\left(\Psi^{k}(T)-1\right)=$ $2 k-2 k n(T)+2 k+(2 k+1) \Psi^{k}(T)-2 k-1$ or equivalently, $k n_{1}(T) \geq$ $2 k-2 k n(T)+(2 k+1) \Psi^{k}(T)+k-1 \geq 2 k-2 k n(T)+(2 k+1) \Psi^{k}(T)$ due to $k \geq 1$.

Case 2. If $d_{k, T}\left(v_{k}\right)=k+1$, we consider two subcases: $\Psi^{k}(T)<$ $\Psi^{k}\left(T^{\prime}\right)+1$ or $\Psi^{k}(T)=\Psi^{k}\left(T^{\prime}\right)+1$. there are two subcases:

Subcase 2.1. If $\Psi^{k}(T)<\Psi^{k}\left(T^{\prime}\right)+1$, then since clearly, $\Psi^{k}\left(T^{\prime}\right) \leq$ $\Psi^{k}(T)$, we conclude $\Psi^{k}\left(T^{\prime}\right)=\Psi^{k}(T)$. By induction, $k n_{1}\left(T^{\prime}\right) \geq 2 k-$ $2 k n\left(T^{\prime}\right)+(2 k+1) \Psi^{k}\left(T^{\prime}\right)$ and consequently $k n_{1}(T) \geq 2 k-2 k n(T)+$ $(2 k+1) \Psi^{k}(T)$ as $n_{1}(T)=n_{1}\left(T^{\prime}\right), n\left(T^{\prime}\right)=n(T)-1$ and $\Psi^{k}\left(T^{\prime}\right)=\Psi^{k}(T)$.

Subcase 2.2. If $\Psi^{k}(T)=\Psi^{k}\left(T^{\prime}\right)+1$, then $v_{k+1} \notin N_{k, T}(\Omega(T))$ (otherwise $D-\left\{v_{k}\right\}$ would be a k-distance enclaveless set of T and $1+\Psi^{k}\left(T^{\prime}\right)>$ $\Psi^{k}(T)$)and therefore $l \geq 2 k+2$. By T_{1} and T_{2} we denote the subtrees of $T-v_{k+1} v_{k+2}$ to which belong vertices v_{k+2} and v_{k+1}, respectively. If $n\left(T_{1}\right)=k+1$, then certainly $k n_{1}\left(T_{1}\right) \geq 2 k-2 k n\left(T_{1}\right)+(2 k+1) \Psi^{k}\left(T_{1}\right)$. Thus assume that $n\left(T_{1}\right) \geq k+2$. Let Ω_{2} denotes the set $\Omega\left(T_{2}\right) \cap \Omega(T)$ and let D_{2} be a maximum k-distance enclaveless set of T_{2} which does not contain v_{k+1}. Since $d_{k, T}\left(v_{k}\right)=k+1$, from the choice of P, it follows that all k-neighbours of v_{k+1} in T_{2} are of degree $k+1$ and this implies $\left|\Omega_{2}\right|=\left|D_{2}\right|$. It is easy to observe that, $\Psi^{k}(T)=\Psi^{k}\left(T_{1}\right)+\Psi^{k}\left(T_{2}\right)=\Psi^{k}\left(T_{1}\right)+\left|D_{2}\right|$ and $n(T)=n\left(T_{1}\right)+\left|\Omega_{2}\right|+\left|D_{2}\right|+1$. If v_{k+2} is an leaf of T_{1}, then
we have $n_{1}(T)=n_{1}\left(T_{1}\right)+\left|\Omega_{2}\right|-1$, otherwise $n_{1}(T)=n_{1}\left(T_{1}\right)+\left|\Omega_{2}\right| \geq$ $n_{1}\left(T_{1}\right)+\left|\Omega_{2}\right|-1$ as well. Now, since $n\left(T_{1}\right) \geq k+2$; we have by induction $k n_{1}\left(T_{1}\right) \geq 2 k-2 k n\left(T_{1}\right)+(2 k+1) \Psi^{k}\left(T_{1}\right)$. In both cases, for $n\left(T_{1}\right)=k+1$ and for $n\left(T_{1}\right) \geq k+2$ we get $2 k-2 k n\left(T_{1}\right)+(2 k+1) \Psi^{k}\left(T_{1}\right) \leq k n_{1}\left(T_{1}\right) \leq$ $k n_{1}(T)-k\left|\Omega_{2}\right|+k$. Thus $2 k-2 k\left(n(T)-\left|\Omega_{2}\right|-\left|D_{2}\right|-1\right)+(2 k+1)\left(\Psi^{k}(T)-\right.$ $\left.\left|D_{2}\right|\right) \leq k n_{1}\left(T_{1}\right) \leq k n_{1}(T)-k\left|\Omega_{2}\right|+k$ and $2 k-2 k n(T)+(2 k+1) \Psi^{k}(T) \leq$ $2 k-2 k n(T)+(2 k+1) \Psi^{k}(T)+k\left(\left|\Omega_{2}\right|+1\right)-\left|D_{2}\right| \leq k n_{1}(T)$.

By \Re we denote the family of all trees in which the distance between any two distinct leaves is equevalent to $2 k$ modulo $2 k+1$; i.e., a tree $T \in \Re$ if $d(x, y) \equiv 2 k(\bmod 2 k+1)$ for two distinct vertices $x, y \in \Omega(T)$. The next lemma describes main properties of trees belonging to \Re.

Lemma 5.2. If T is a tree belonging to the family \Re and $\Psi^{k}(T)<n-1$, then there exists an edge xy in T such that both T_{x} and T_{y} belong to \Re, $\Psi^{k}(T)=\Psi^{k}\left(T_{x}\right)+\Psi^{k}\left(T_{y}\right)=$ and $n_{1}(T)=n_{1}\left(T_{x}\right)+n_{1}\left(T_{y}\right)-2$.

Proof. Let $T \in \Re$ with $\Psi^{k}(T) \leq n-2$ and let $P=v_{0} v_{1} \ldots v_{l}$ be a longest path in T. In addition, let D be a maximum k-distance enclaveless set of T containing the vertex v_{k}. Then $l \equiv 2 k(\bmod 2 k+1), l \geq 4 k+1$ and $v_{k} \in$ D. We will show that $d\left(v_{k+1}\right)=d\left(v_{k+2}\right)=\ldots=d\left(v_{3 k}\right)=2$. Suppose to the contrary that $N\left(v_{i}\right)-V(P) \neq \emptyset$ for some $i \in\{k+1, k+2, \ldots, 3 k\}$. Then there exists a leaf $u \in \Omega(T)$ such that $d\left(u, v_{i}\right)=d(u, P)>0$. In order to derive a contradiction, we will compute the possible values for i. We have $d\left(u, v_{i}\right)=d\left(u, v_{0}\right)-d\left(v, v_{0}\right)=d\left(u, v_{0}\right)-i$ and $d\left(v_{i}, v_{l}\right)=$ $d\left(v_{0}, v_{l}\right)-d\left(v_{0}, v_{i}\right)=d\left(v_{0}, v_{l}\right)-i$. It follows that $d\left(u, v_{l}\right)=d\left(u, v_{i}\right)+$ $d\left(v_{i}, v_{l}\right)=d\left(u, v_{0}\right)+d\left(v_{0}, v_{l}\right)-2 i$. Since v_{0}, v_{l} and u are leaves and $T \in \Re$, it follows that $2 i \equiv 2 k(\bmod (2 k+1))$. The latter together with $k+1 \leq i \leq 3 k$ leads immediately to a contradiction. It follows that $d\left(v_{k+1}\right)=d\left(v_{k+2}\right)=\ldots=d\left(v_{3 k}\right)=2$ which means we can choose D such that $v_{3 k+l} \in D$. Let us remove the edge $x y=v_{2 k} v_{2 k+l}$ from T. Then $n_{1}(T)=n_{1}\left(T_{x}\right)+n\left(T_{y}\right)-2, \Psi^{k}\left(T_{x}\right)=n-1$ and $D-v_{k}$ is a maximum k-distance enclaveless set of T_{y}. Thus, $\Psi^{k}\left(T_{x}\right)+\Psi^{k}\left(T_{y}\right)=\Psi^{k}(T)$. Since $T_{x}=S S_{t}^{k-1}$ is a star with all edges $(k-1)$-times subdivided, $T_{x} \in$ \Re. As $T \in \Re$, we have $d\left(v_{0}, v\right)=2 k(\bmod (2 k+1))$ for every vertex $v_{0} \neq v \in \Omega(T)$. Since $d\left(v_{0}, v_{2 k+1}\right)=2 k+1$, we obtain $d\left(v_{2 k+1}, v\right)=$ $2 k(\bmod (2 k+1))$ for every vertex $v_{2 k+1} \neq v \in \Omega\left(T_{y}\right)$ and consequently, $T_{y} \in \Re$. This completes the proof.

Using Lemmma 5.2, we will now characterize the class of trees T which fulfill the equality $k n_{1}(T)=2 k-2 k n(T)+(2 k+1) \Psi^{k}(T)$.

Theorem 5.3. If T is a tree, then $k n_{1}(T)=2 k-2 k n(T)+(2 k+1) \Psi^{k}(T)$ if and only if T belongs to \Re.

Proof. Suppose first that $T \in \Re$. If $\Psi^{k}(T)=n-1$, then $T=S S_{t}^{k-1}$ is a star with each edge $(k-l)$-times subdivided and $k n_{1}(T)=2 k-$ $2 k n(T)+(2 k+1) \Psi^{k}(T)$ is obvious. Assume now that $\Psi^{k}(T) \leq n-2$ and that $k n_{1}\left(T^{\prime}\right)=2 k-2 k n\left(T^{\prime}\right)+(2 k+1) \Psi^{k}\left(T^{\prime}\right)$ for every tree $T^{\prime} \in \Re$ with $\Psi^{k}(T)<\Psi^{k}\left(T^{\prime}\right)+1$. According to Lemmma 5.2, there exists an edge $x y$ in T such that $T_{x}, T_{y} \in \Re, \Psi^{k}(T)=\Psi^{k}\left(T_{x}\right)+\Psi^{k}\left(T_{y}\right)$ and $n_{1}(T)=n_{1}\left(T_{x}\right)+n_{1}\left(T_{y}\right)-2$. By the induction hypothesis, $k n_{1}\left(T_{x}\right)=$ $2 k-2 k n\left(T_{x}\right)+(2 k+1) \Psi^{k}\left(T_{x}\right)$ and $k n_{1}\left(T_{y}\right)=2 k-2 k n\left(T_{y}\right)+(2 k+$ 1) $\Psi^{k}\left(T_{y}\right)$. By adding these equalities we finally conclude that $k n_{1}(T)=$ $2 k-2 k n(T)+(2 k+1) \Psi^{k}(T)$. Suppose second that T fulfills the equality $k n_{1}(T)=2 k-2 k n(T)+(2 k+1) \Psi^{k}(T)$. If $\Psi^{k}(T)=n(T)-1$, then the equality yields $k n_{1}(T)=n(T)-1$. This together with $\operatorname{diam}(T) \leq 2 k$ implies that $T=S S_{t}^{k-1}$ is a star with each edge ($k-1$)-times subdivided and $T \in \Re$ is obvious. Now let T be a tree with $\Psi^{k}(T)<n-1$ that fulfills the equality $k n_{1}(T)=2 k-2 k n(T)+(2 k+1) \Psi^{k}(T)$ and assume that $T^{\prime} \in \Re$ for all trees T^{\prime} with $\Psi^{k}(T)<\Psi^{k}\left(T^{\prime}\right)+1$ and $k n_{1}\left(T^{\prime}\right)=$ $2 k-2 k n\left(T^{\prime}\right)+(2 k+1) \Psi^{k}\left(T^{\prime}\right)$. According to Lemmma 5.2 there exists an edge $x y$ in T such that $\Psi^{k}(T)=\Psi^{k}\left(T_{x}\right)+\Psi^{k}\left(T_{y}\right)$. Since $k n_{1}(T)=$ $2 k-2 k n(T)+(2 k+1) \Psi^{k}(T)$, it follows that $n_{1}(T)=n_{1}\left(T_{x}\right)+n_{1}\left(T_{y}\right)-2$, $k n_{1}\left(T_{x}\right)=2 k-2 k n\left(T_{x}\right)+(2 k+1) \Psi^{k}\left(T_{x}\right)$ and $k n_{1}\left(T_{y}\right)=2 k-2 k n\left(T_{y}\right)+$ $(2 k+1) \Psi^{k}\left(T_{y}\right)$. Note that this means that T arises from T_{x} and T_{y} by adding the edge $x y$ which joins the leaves x and y of T_{x} and T_{y}, respectively. In addition, we conclude that $T_{x}, T_{y} \in \Re$ by the induction hypothesis. The latter together with the observation before implies that $T \in \Re$ which completes the proof of this theorem.

References

[1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Macmillan. London, 1976).
[2] R. Hammack, W. Imrich, and S. Klavzar, Handbook of Product Graphs, Second Edition CRC Press (June 3, 2011).
[3] M. Lemanska: Lower bound on the domination number of a tree, Discv.ss. Math, Graph Theory 24 (2004), 165-169.
[4] J.R. Lewis, "Differentials of graphs", Master's Thesis, East Tennessee State University, 2004.
[5] D.A. Mojdeh, I. Masoumi, On the k-distance differential of graphs, To appear in TWMS J. App. and Eng. Math..
[6] P.J. Slater, Enclaveless sets and MK-systems. J. Res. Nat. Bur. Stand 82 (1977), 197-202.
[7] D.B. West, Introduction to Graph theory, Second edition, Prentice Hall, (2001).

[^0]: ${ }^{1}$ Corresponding author: damojdeh@umz.ac.ir Received: 03 June 2020
 Accepted: 02 August 2020

