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ABSTRACT. For an integer k > 1, a k-distance enclaveless number
(or k-distance B-differential) of a connected graph G = (V, FE) is
U*(G) = maz{|(V — X) N Ni,g(X)| : X C V}. In this paper, we
establish upper bounds on the k-distance enclaveless number of a
graph in terms of its diameter, radius and girth. Also, we prove
that for connected graphs G and H with orders n and m respec-
tively, U*(G x H) < mn —n —m + ¥*(GQ) + U*(H) + 1, where
G x H denotes the direct product of G and H. In the end of this
paper, we show that the k-distance enclaveless number ¥* (T) of a
tree T on n > k + 1 vertices and with n, leaves satisfies inequality
UR(T) < k@g;jﬁrm) and we characterize the extremal trees.
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1. INTRODUCTION

Distance in graphs is a fundamental concept in graph theory. Let G
be a connected graph. The distance between two vertices u and v in
G, denoted dg(u,v), is the length of a shortest (u,v)-path in G. The
eccentricity eccq(v) of v in G is the distance between v and a vertex
farthest from v in G. The minimum eccentricity among all vertices of
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G is the radius of G, denoted by rad(G), while the maximum eccentric-
ity among all vertices of G is the diameter of G, denoted by diam(G).
Thus, the diameter of G is the maximum distance among all pairs of
vertices of G. A vertex v with eccg(v) = diam(G) is called a periph-
eral verter of G. A diametral path in G is a shortest path in G whose
length is equal to the diameter of the graph. Thus, a diametral path
is a path of length diam(G) joining two peripheral vertices of G. If
S is a set of vertices in G, then the distance, dg(v,S), from a vertex
v to the set S is the minimum distance from v to a vertex of S; that
is, dg(v,S) = min{dg(u,v) : v € S}. In particular, if v € S, then
d(v,S) = 0. Enclaveless number (B-differential) of graphs is also very
well studied in graph theory. An enclaveless number (B-differential) of
aset X in a graph G is U(X) = |bd(X)| = |B(X)| = [(V —X) N Ng(X)|
so that B(X) is called boundary of X. The enclaveless number (B-
differential) of G, denoted by ¥(G), is ¥(G) = max{|B(X)| : X C V}.
In this paper, we start the study of k-distance enclaveless number in
graphs which combines the concepts of both distance and enclaveless
number in graphs [4]. Let £ > 1 be an integer and let G be a graph.
A k-distance enclaveless number (k-distance B-differential) of a set X
in a graph G is U¥(X) = |bd"(X)| = |B¥(X)| = [(V — X) N Ny,c(X)|
so that B¥(X) is called k-boundary of X. The k-distance enclaveless
number (k-distance B-differential) of G, denoted by ¥*(G), is ¥*(G) =
maz{|B*¥(X)| : X C V}. A set D is called k-distance enclaveless set
of G if B¥(D) =V — D. A set D is called mazimum k-distance en-
claveless set of G if W*(G) = |B¥(D)|. When k = 1, the 1-distance
enclaveless number of G is precisely the enclaveless number of G; that
is, U1(G) = ¥(G). In 1977, Slater [6] introduced the concept of a en-
claveless set (or B-differential set) in a graph.

Let G = (V, E) be a simple undirected graph with the set of vertices
V = V(@) and the set of edges E = E(G). We refer the reader to [1],[7]
for any terminology and notation not here in. We denote minimum de-
gree of a graph G with §(G) and maximum degree with A(G). The open
neighborhood of a vertex v € V is the set N(v) = {u : uv € E(G)}, while
the closed neighborhood of a vertex v € V' is N[v] = N(v)U{v}. The open
neighborhood of a set S C V is the set N(S) = UyesN(v). The closed
neighborhood of a set S C V' is the set N[S] = N(S)US. Let E, be the
set of edges incident with v in G that is, £, = {uv € E(G) : uw € N(v)}.
We denote the degree of v by degg(v) = |E,|.

Let k be a positive integer. For a vertex v € V(G), the open k-
neighborhood Ny ¢(v) is the set {u € V(G) : u # v and d(u,v) < k}
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and the closed k-neighborhood Ny, ¢ [v] is the set Ny ¢(v)U{v}. The open
k-neighborhood Ny (S) of a set S C V is the set UyegNk.c(v), and the
closed k-neighborhood Ny, ¢[S] of a set S C V is the set N ¢(S)US.
The k-degree of a vertex v is defined as oy, ¢ (v) = degy, (v) = [Ng,c(v)]-
The minimum and mazimum k-degree of a graph G are denoted by
0k(G) and Ag(G), respectively. For a non-empty subset S C V', and any
vertex v € V' we denote by N g(v) the set of k-neighbors v has in S:
Ni.s(v) :={u € S :d(u,v) < k} and 63 g(v) = |Nj g(v)|. The graph G is
called distance k-regularif §,(G) = Ag(G). The k-th power G* of a graph
G is the graph with vertex set V(G¥) = V(G) and edge set E(G*) =
{zy : d(z,y) < k}. Now clearly, we have Ny g(v) = Ny gk (v) = Nek (v),
Nipglv] = Nygelv] = Ner[v], degra(v) = degygr(v) = deggr(v),
5x(G) = 01(GF) = 6(G*) and AL(G) = A1(GF) = A(GF). A vertex
v is called k-adjacent to (or k-neighbor with) a vertex w if d(v, w) = k.
A vertex of degree one is called a leaf and the set of leaves of a graph
G is denoted by Q(G). The number of leaves Q(G) will be denoted by
ni(G). For a tree T' and an edge xy € E(T), let T, and T, denote the
components of T'— zy in which the vertices  and y belong to T}, and T},
respectively. A complete bipartite graph K,,, with partite sets X,Y
such that | X| =m and |Y| = n. If m = 1, then K, is called an star
with n + 1 vertices. The edge subdivision in a graph G is the following
operation; remove one edge ¢ = xy of G and add a new vertex z and
the edges 2z and zy. A k-times subdivided star SSF is obtained from a
star K1; by subdividing each edge by exactly k vertices.

This paper is organized as follows: In Section 2 we study some el-
ementary results on k-distance enclaveless number of G. We establish
upper bounds on the k-distance enclaveless number of a graph in terms
of its diameter, radius and girth in Section 3. Also, we prove that
for the connected graphs G and H with orders n and m respectively,
UH(G x H) <mn —n—m+ UEG) + U¥(H) + 1 in Section 4. Finally,
in Section 5, we show that the k-distance enclaveless number W*(T") of
a tree T on n > k + 1 vertices and with n; leaves satisfies inequality

Tk(T) < 16(22273:"1) and we characterize the extremal trees.

2. PRELIMINARY RESULTS

In order to prove recent inequality, the techniques of article [3] have
been used. It is well known that, if H is a subgraph of G and u,v be
two vertices in G, then dg(u,v) < dpy(u,v) and Ni g(u) € Nig(u).
Therefore we have following observation.

Observation 2.1. For k > 1, if H is a spanning subgraph of a graph
G, then Uk (GQ) < UF(H).
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The following theorem shows that the study of k-distance enclaveless
set of a graph G is lead to the study of k-distance enclaveless set of a
spanning tree 1" of G.

Theorem 2.2. For k > 1, every connected graph G has a spanning tree
T such that UE(T) = UF(Q).

Proof. Let D = {vy,...,v} be a maximum k-distance enclaveless set
of G. Thus, |D| =t = ¥*(G). We now partition the vertex set V(G)
into t sets Vi,...,V; as follows. Initially, we let V; = {v;} for all i € [t].
We then consider sequentially the vertices not in D. For each vertex
v € V(G) — D, we select a vertex v; € D at minimum distance from v
in G and add the vertex v to the set V;. We note that if v € V(G) — D
and v € V; for some i € [t], then dg(v,v;) = dg(v, D), although the
vertex v; is not necessarily the unique vertex of D at minimum distance
from v in G. Further, since D is a k-distance enclaveless set of G , we
note that dg(v,v;) < k. For each i € [t], let T; be a spanning tree of
G[V;] that is distance preserving from the vertex v;; that is, V(T;) = V;
and for every vertex v € V(T;), we have dr,(v,v;) = dg(v,v;). We
now let T be the spanning tree of G obtained from the disjoint union
of the t trees T1,...,T; by adding t — 1 edges of G. We remark that
these added t — 1 edges exist as G is connected. We now consider an
arbitrary vertex, v say, of G. The vertex v € V; for some i € [t]. Thus,
dr(v,v) < dr,(v,v;) = dg(v,v;) = dg(v,D) < k. Therefore, the set
D is a k-distance enclaveless set of T, and so U*(T) < |D| = T*(G).
However, by Observation 2.1, U*(G) < W*(T). Consequently, U*(T) =
Uk(@). O

We shall also need the following lemma.

Lemma 2.3. Let G be a connected graph that is not a tree, and let C' be
a shortest cycle in G. If v is a vertex of G outside of C that |B*({v})N
V(C)| > 2k, then there exist two vertices u,w € V(C) U B*({v}) such
that a shortest (u,v)-path does not contain w and a shortest (v, w)-path
does not contain u.

Proof. Since v is not on C| it has a distance of at least 1 to every vertex
of C'. Let u be a vertex of C' at minimum distance from v in G. We put
Q = V(C)N B*({v}). Thus, Q@ C V(C) and, by assumption, |Q| > 2k.
Among all vertices in @), let w € @ be chosen to have maximum distance
from u on the cycle C'. Since there are 2k —1 vertices within distance k—1
from u on C, the vertex w has distance at least & from u on the cycle C.
Let P, be a shortest (u, v)-path and let P, be a shortest (v, w)-path in G.
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If w e V(P,), then dg(u,w) < dg(u,v) < k, contradicting our choice of
the vertex u. Therefore, w ¢ V(P,). Suppose that u € V(P,). Since C
is a shortest cycle in GG, the distance between v and w on C'is the same as
the distance between u and w in G. Thus, dg(u, w) = do(u, w), implying
that dg (v, w) = dg(v,u)+dg(u, w) > 1+dg(u, w) = 1+dc(u, w) > 1+k,
a contradiction. Therefore, u ¢ V(P,). O

3. UPPER BOUND OF THE k-DISTANCE ENCLAVELESS IN A GRAPH

In this section we provide various upper bounds on the k-distance
enclaveless number for general graphs.

Theorem 3.1. For k > 1, if G is a connected graph with diameter d,
then

2kn+n—d—1
Uk (@Q) <
(&) = 2k +1
This bound is sharp.

Proof. Let P : ugu; ...uq be a diametral path in G, joining two periph-
eral vertices u = up and v = ug4 of G. Thus, the length of P is diam(G) =
d. We claim that for every vertex v € G, |V (P) N B¥({v})| < 2k + 1.
Suppose, to the contrary, that there exists a vertex ¢ € V(G) so that
we have, |V(P) N B*({q})| > 2k + 2. (Possibly, ¢ € V(P).) Now we
put Q = V(P) N B¥({qg}). Then |Q| > 2k + 2. Let i and j be the
smallest and greatest integers respectively, such that u;, u; € Q. We
note that @ C {us, wit1,...,u;}. Thus, 2k +2 < |Q] < j — i+ 1. Since
P is a shortest (u,v)-path in G, we therefore note that dg(ui,u;) =
dp(uj,u;) = j—1i > 2k + 1. Let P; and P; be shortest (u, ¢)-path and
(q,v)-path in G. Since u;,u; € B*({q}), both paths P, and P, have
length at most k. Therefore, the (u;, uj)-path obtained by the following
path P; from u; to ¢, and then proceeding along the path P; from ¢ to
uj, has length at most 2k, implying that dg(u;, uj) < 2k, a contradic-
tion. Therefore, for every vertex v € V(G), |[V(P) N B*(v)| < 2k + 1.
Let S be a maximum k-distance enclaveless set of G. Thus, |S| = ¥¥*(G).
For every vertex x € S, we have |V(P) N B*¥({z})| < 2k + 1, and so
|V(P) N B¥(S)| < (n —|S])(2k + 1). However, since S is a k-distance
enclaveless set of G and for any vertex y € P, y € B*(S), thus we have,
|BE(S)NV (P)| = d+ 1. Therefore, (n —|S|)(2k +1) > d + 1, or, equiv-
alently, U*(G) = |S| < (2kn+n —d —1)/(2k + 1).

For seeing the sharpness of bound, let G be a path, vivs...v,, of
order n = ¢(2k + 1) for some ¢ > 1. Let d = diam(G), and so d =

n—1=0(2k+1) - 1. It is clear U¥(G) < GEnd=l — oy = ¢,
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FIGURE 1. Forn =4, Vo =V3 =V, = K>

The set

S = UL
is a k-distance enclaveless set of G, and so ¥*(G) > |S| = n — £. Con-
sequently, V¥(G) = n — ¢ = (%%ﬁ. We state this formally as
follows. (]

{ka+1+i(2k+1)}

For the family of the graphs we obtain the bound in Theorem 3.1.
For this, let P = vivs...v, be a path. By replacing each vertex v;, for
2 <i < n—1, on the path with a clique (clique V; corresponds to vertex
v;) of size at least § > 1, and adding all edges between v; and vertices
in V5, adding all edges between v,, and vertices in V,,_1, and adding all
edges between vertices in V; and V41 for 2 < i < n — 2, we obtain a
graph with minimum degree § achieving the upper bound of Theorem
3.1, see Figure 1.

In general, by applying Theorem 3.1, the k-distance enclaveless num-
ber of a cycle C,, or path P, of order n > 3, are easily obtained.

Proposition 3.2. For k > 1 and n > 3, V*(P,) = ¥*(C,) = n —
=it

As a consequence of Theorem 3.1, we have the following upper bound
on the k-distance enclaveless number of a graph in terms of its radius.

Corollary 3.3. For k > 1, if G is a connected graph with radius r, then
2kn +n —2r
e < ——————
(@) = 2k+1
This bound is sharp.

Proof. By Theorem 2.2, the graph G has a spanning tree T such that
UF(T) = U¥(G). Since adding edges to a graph cannot increase its
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radius, rad(G) < rad(T). Since T' is a tree, we note that diam(T") >
2rad(T) — 1. Applying Theorem 3.1 to the tree T', we have that

\I/k(G) _ \I’k(T) < 2kn2+k7:jld71 < 2kn+721];ﬁ7i+171 —_ ng]jfl—r.

For seeing the upper bound, let G be a path P, of order n = 2¢(2k+1)
for some integer ¢ > 1. Let d = diam(G) and let r = rad(G), and so
d =202k +1) — 1 and r = ¢(2k + 1). In particular, we note that
d = 2r — 1. By Theorem 3.1, ¥*(G) = Qk";'k’:fld_l = kazﬁl_%. Then
by replacing each internal vertices on the path with a clique of size at
least 4 > 1, we can obtain a graph with minimum degree § achieving
the upper bound. O

Theorem 3.4. For k > 1, if G is a connected graph with girth g, then

& 2kn+n—g
vHG) < 2k+1
Proof. If g < 2k + 1, then upper bound holds by using Proposition 3.2
and Corollary 3.3. Let g > 2k + 2, and C' be a shortest cycle in G, of
length g. We note that the distance between two vertices in C' is exactly
equal to the distance between them in G. Now we consider the following
two cases, depending on the value of the girth of graphs.

Case 1. 2k +2 < g < 4k + 2. In this case, we show that \I/k(G) <
n—[5251 = n—2. Suppose to the contrary, that U*(GQ) =n—1. Then,
G contains a vertex v that is within distance k£ from every vertex of G.
In particular, d(u,v) < k for every vertex u € V(C). If v € V(C), then,
since C is a shortest cycle in G, we note that do(u,v) = dg(u,v) < k
for every vertex u € V(C'). However, the lower bound condition on the
girth, namely g > 2k + 2, implies that no vertex on the cycle C' is within
distance k£ in C from every vertex of C, a contradiction. Therefore,
v ¢ V(C). By Lemma 2.3, there exist two vertices u,w € V(C) such
that a shortest (v, u)-path does not contain w and a shortest (v, w)-path
does not contain u. We show that, we can choose ©v and w to be adjacent
vertices on C. Let w be a vertex of C' at maximum distance, say d,,,
from v in G. Let w; and ws be the two neighbors of w on the cycle C. If
dg (v, w1) = dy, then we can take u = wy, and the desired property (that
a shortest (v, u)-path does not contain w and a shortest (v, w)-path does
not contain u) holds. Hence we may assume that dg(v,w;) # dy. By
our choice of the vertex w, we note that dg(v,w1) < dy,, implying that
dg(v,w1) = dy — 1. Similarly, we may assume that dg(v,ws) = dy — 1.
Let P, be a shortest (v, w)-path. At most one of w; and wq belong to
the path P,. Renaming w; and we, if necessary, we may assume that
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wy does not belong to the path P,. In this case, letting u = w; and let-
ting P, be a shortest (v, u)-path, we note that w ¢ V(P,). As observed
earlier, u ¢ V(P,). This shows that u and w can indeed be chosen to be
neighbors on C. Let x be the last vertex in common with the (v, u)-path
P,, and the (v, w)-path, P,. Possibly, z = v. Then, the cycle obtained
from the (z,u)-section of P, by proceeding along the edge uw to w, and
then the following (w,x)-section of P, back to z, has length at most
dg(v,u) + 1+ dg(v,w) < 2k + 1, contradicting the fact that the girth
g > 2k + 2. Therefore, ¥¥(G) < n — 2, as desired.

Case 2. g > 4k + 3. Let S be a maximum k-distance enclaveless set
of G, and so |S| = U¥(G). Let K = SNV(C)and let L =S — V(C).
Thus, S = KUL. If L =0, then S = K and the set K is a k-distance
enclaveless set of C, implying by Proposition 3.2, that ¥*(G) = |S| =
|K| < W*(Cy) = n — [5%7], and the theorem holds. Hence we may
assume that |L]| > 1. We wish to show that |K|+|L| = |S] < n—[5%5].
Suppose to the contrary that,

9
142k

As observed earlier, the distance between two vertices in V' (C) is exactly
the same in C as in G. This implies that each vertex of K (recall that
K C V(C)) is within distance k from exactly 2k + 1 vertices of C'. Thus,
the set B¥(K) N V(C) has at least |K|(2k + 1) vertices where

|K|>n—| 1+1—|L]

K2k +1) > (n — [15%5 1 + 1= [L))(2k + 1) >

(n—$E22 +1—|L))(2k +1) =2kn+n—g+1—|L|(2k +1).

Thus, clearly we have |K|(2k+1) >n—g+1—|L|(2k + 1). Conse-
quently, since |V (C¢)| = n—g, there are at most —1+|L|(2k+1) vertices
of V(C)¢ that do not belong to set B*(K), and so they must belong to set
Bk(L). Thus, by the Pigeonhole Principle, there is at least one vertex,
say v, in L that |[B*({v}) NV (C)| > 2k. By Lemma 2.3, there exist two
vertices u,w € V(C) that are both u,w € B¥({v}) and such that a short-
est (u,v)-path, P, say, (from u to v) does not contain w and a shortest
(w, v)-path, P, say, (from w to v) does not contain u. Analogously as in
the proof of Lemma 2.3, we can choose the vertex u to be a vertex of C
at minimum distance from v in G. Thus, the vertex u is the only vertex
on the cycle C' that belongs to the path P,. Combining the paths P, and
P, produces a (u,w)-walk of length at most dg(u,v) + dg(v,w) < 2k,
implying that dg(u,w) < 2k. Since C is a shortest cycle in G, we
therefore have that de(u,w) = dg(u,w) < 2k. The cycle C yields two
(w, u)-paths. Let Py, be the (w,u)-path on the cycle C of shorter length
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(starting at w and ending at w). Thus, Py,has length do(u,w) < 2k.
Note that the path P,, belongs entirely on the cycle C. Let z € V(C)
be the last vertex in common with the (w,v)-path, P,, and the (w,u)-
path, Py,. Possibly, z = w. However, note that x # u since u ¢ V(P,).
Let y be the first vertex in common with the (x,v)-subsection of the
path P, and with the (u,v)-path P,. Possibly, y = v. However, note
that y # x since x ¢ V(P,) and V(P,) NV (C) = {u}. Using the (z,u)-
subsection of the path P,,, the (z,y)-subsection of the path P,, and
the (u,y)-subsection of the path P, produces a cycle in G of length at
most dg(u,v) + dg(w,v) + dg(u,w) < k + k + 2k = 4k, contradicting
the fact that the girth g > 4k + 3. Therefore, V*(G) = |S| = |K|+|L| ,
as desired. (]

4. DIRECT ProDUCT GRAPHS

The direct product graph, G x H, of graphs G and H is the graph
with vertex set V(G) x V(H) and with edges (g1, h1)(g2, h2), where
9192 € E(G) and h1hy € E(H). Let A C V(G x H). The projection of
A onto G is defined as Pg(A) = {g € V(G) : (g9,h) € A for some h €
V(H)}. Similarly, the projection of A onto H is defined as Py (A) =
{h € V(H) : (9,h) € A for some g € V(G)}. For a detailed discussion
on direct product graphs, we refer the reader to the handbook on graph
products [2]. Recall that for every graph G, ¥1(G) = ¥(G).

Lemma 4.1. Let G and H be connected graphs. If D is a k-distance
enclaveless set of G x H, then Pg(D) is a k-distance enclaveless set of
G and Py (D) is a k-distance enclaveless set of H.

Proof. Let D C V(G x H) be a k-distance enclaveless set of G x H.
We firstly show that Pg(D) is a k-distance enclaveless set of G. Or,
equivalently, we have to show that B*(Pg(D)) = V(G) — Pg(D). If
g € B¥(Pg(D)), then we have clearly, 0 < dg(g, Po(D)) < k. Thus,
g & Pe(D) and then B¥(Pg(D)) C V(G) — Pg(D). Hence, we assume
that g € V(G)—Pg(D). Let h be an arbitrary vertex in V(H). Since g ¢
Pg(D), then (g,h) ¢ D. However, the set D is a k-distance enclaveless
set of G x H, and so (g,h) € B¥(D) ; that is, daxr((g,h), D) < k. Let
(90, ho), (91, h1),- -, (9r, hy) be a shortest path from (g, h) to D in Gx H,
where (g, h) = (g0, ho) and (gr, hy) € D. By assumption, 1 < r < k. For
i €{0,...,7 — 1}, the vertices (g;, h;) and (gi+1,hi+1) are adjacent in
G x H. Hence, by the definition of the direct product graph, the vertices
gi; and g;11 are adjacent in G, implying that gogi...gr is a (go, gr)-walk
in G of length r. This in turn implies that there is a (go, gr)-path in G
of length r. Recall that ¢ = go and 1 < r < k. Since (g, h,) € D, the
vertex g, € Pg(D). Hence, there is a path from g to a vertex of Pg(D)
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in G of length at most k. Therefore, g € B¥(Pg(D)). Analogously, the
set Py (D) is a k-distance enclaveless set of H. O

Theorem 4.2. If G and H are connected graphs of the orders n and
m, respectively. Then

UH(G x H) <mn—n—m+ Q)+ V*(H) + 1.

Proof. Let D C V(G x H) be a maximum k-distance enclaveless set of
G x H. Suppose, to the contrary, that |D| > mn —n —m + U*(G) +
UF(H) + 2. We will refer to this inequality as (). By Lemma 4.1,
P (D) is a k-distance enclaveless set of G and Py (D) is a k-distance
enclaveless set of H. Therefore, we have that |D| < n—|Pg(D)| < ¥*(G)
and |D| < m — |Py(D)| < V*(H). If U*(G) = n — 1, then by (%),
UF(H) > |D| > mn —m + 1+ U¥(H), a contradiction. Therefore,
UF(G) < n—2. Analogously, *(H) < n—2. Recall that n—|Pg(D)| <
U*(G). We now remove vertices from the set Pg(D) until we obtain
a set, Dg say, of cardinality exactly n — 1 — W¥(G). Thus, Dg is a
proper subset of Pg(D) of cardinality n — 1 — ¥*(G). Since Dg is not
a k-distance enclaveless set of G, there exists a vertex g € V(G) such
that g ¢ B¥(Dg); that is, dg(g, Dg) > k. Let Dg = {g1,...,9:}, where
t =n—1—U*G) > 1. For each i € [t], there exists a (not necessarily
unique) vertex h; € V(H) such that (g;, h;) € D (since Dg C Pg(D)).
We now consider the set Dy = {(g1,h1),.-.,(gt,ht)}, and note that
Do C D and |Do| =n — 1 — U*(G). By (*), we note that
m — |Pu(D — Do)| > |[D = Do| = |D| = [Do| >
(mn —n—m+U*G)+ T*(H) +2) — (n—1-I5Q))
= mn — 2n —m+ 3+ 208(Q) + UF(H) > Uk (H).

Hence, there exists a vertex h € V(H) such that h ¢ B*(Py (D — Dy));
that is, dg(h, Pu(D — Dg)) > k. We now consider the vertex (g,h) €
V(G x H). Since D is a k-distance enclaveless set of G x H, then
there exists the vertex (g*,h*) € D such that (g,h) € B*{(g*, h*)}.
A similar proof as the proof of Lemma 4.1 shows that dg(g,¢") < k
and dg(h,h*) < k. If (¢*,h*) € D — Dy, then h* € Py(D — D),
implying that dg(h, Pg(D — Dy)) < dg(h,h*) < k, a contradiction.
Hence, (¢g*,h*) € Dy. This implies that ¢* € Pg(Dy) = Dg. Thus,
da(g9, D) < da(g,9*) < k, contradicting the fact that dg(g, Dg) > k.
Therefore, (*) inequality that |D| > mn —n —m + VF(G) + UF(H) + 2
must be false, and the result follows. O

5. UPPER BOUND FOR k-DISTANCE ENCLAVELESS NUMBER OF A TREE

In this section we study the upper bound of k-distance enclaveless
number of trees.
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Theorem 5.1. Let T be a tree of order n(T) > k + 1 and with ni(T)
leaves. Then

kni(T) > 2k — 2kn(T) + (2k 4+ 1)0*(T).

Proof. We use induction on n, the order of a tree. The result is trivial for
a tree of order k + 1 due to diam(T) < k or equivalently ¥*(T) = n — 1.
Let T be a tree of order n > k + 1, diam(T) > 2k + 1 and assume
that kny(T') > 2k — 2kn(T") + (2k + 1)T*(T") for each tree T’ with
k4+1<n(T') <n—1. Let D be a maximum k-distance enclaveless set
of T having property that, let P = vgvy - - - v; be a longest path in T" and
let T/ = T —{wvp} be the subtree of T'. Clearly, we have I > 2k+1. With-
out loss of generality we may assume that P is chosen in such a way that
di 7(v) is as large as possible. We consider two cases: di 7 (v) > k+1
or dk,T(vk) =k+1.

Case 1. dpr(vg) >k + 1.

In T’ we have kny(T") > 2k —2kn(T")+ (2k+1)¥*(T") (by induction),
and as ny(T") = n1(T) — 1, n(T") = n(T) — 1 and U*(T) = T*(T") + 1,
therefore, k(ni(T) — 1) > 2k — 2k(n(T) — 1) + (2k + 1)(¥¥(T) - 1) =
2k — 2kn(T) + 2k + (2k —i— 1)U*(T) — 2k — 1 or equivalently, kn(T) >
2k — 2kn(T) + (2k + 1)UH(T) + k — 1 > 2k — 2kn(T) + (2k + 1) Wk (T)
due to k > 1.

Case 2. If dpr(vk) = k + 1, we consider two subcases: W*(T) <
UF(T") + 1 or W*(T) = WF(T") + 1. there are two subcases:

Subcase 2.1. If W*(T) < W*(T’) + 1, then since clearly, U*(T") <
UF(T), we conclude WF(T") = W*(T). By induction, knq(T') > 2k —
2kn(T") + (2k + 1)W*(T") and consequently kni(T) > 2k — an( ) +
(2k+1)Uk(T) as ny (T) = ny (T"), n(T') = n(T)—1 and U*(T") = U*(T).
Subcase 2.2. If W*(T) = WK(T") + 1, then vi1 ¢ N7 (Q(T)) (other-
wise D—{v;,} would be a k-distance enclaveless set of T and 1-+¥*(T") >
U*(T))and therefore | > 2k + 2. By T and Ty we denote the subtrees
of T'— vp41Vk42 to which belong vertices vg1o and vg1, respectively. If
n(T1) = k +1, then certainly kny(T1) > 2k — 2kn(T1) + (2k + 1)UF(Ty).
Thus assume that n(7T1) > k+2. Let Qg denotes the set Q(T5)NQ(T) and
let Dy be a maximum k-distance enclaveless set of T5 which does not con-
tain vg41. Since di r(vg) = k+1, from the choice of P, it follows that all
k-neighbours of vy in Ty are of degree k+1 and this implies || = |Da|.
It is easy to observe that, U*(T) = WK(Ty) 4+ UF(Ty) = WF(Ty) + | Ds
and n(T) = n(Th) + |Q2| + |D2| + 1. If vgyo is an leaf of 77, then
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we have ni(T) = ni(T1) + |Q2] — 1, otherwise n1(T") = ni(T1) + |Qa| >
n1(T1)+|Q2| —1 as well. Now, since n(T}) > k+2; we have by induction
kni(Ty) > 2k—2kn(Ty)+(2k+1)¥*(T1). In both cases, for n(T}) = k+1
and for n(Ty) > k+2 we get 2k —2kn(Ty) + (2k + 1)U*(Ty) < kny(Ty) <
kny(T)—k|Qa|+k. Thus 2k —2k(n(T)—|Qa|—|Da|—1)+(2k+1) (T*(T) -
|Ds|) < kny(Th) < kny(T) —k|Qo|+k and 2k —2kn(T) + (2k+1)UF(T) <
2k — 2kn(T) + (2k + 1)UH(T) + k(|Q2| + 1) — | D2| < kn1(T). O

By R we denote the family of all trees in which the distance between
any two distinct leaves is equevalent to 2k modulo 2k + 1; i.e., a tree
T € Rifd(z,y) = 2k ( mod 2k+1) for two distinct vertices z,y € Q(T).
The next lemma describes main properties of trees belonging to R.

Lemma 5.2. If T is a tree belonging to the family ® and ¥*(T) < n—1,
then there exists an edge xy in T such that both T, and T, belong to R,
UH(T) = WK (T,) + UK(T,) = and n1(T) = n1(Ty) + n1(T) — 2.

Proof. Let T € R with U*(T) < n—2 and let P = vgv; ... v; be a longest
path in T'. In addition, let D be a maximum k-distance enclaveless set of
T containing the vertex vg. Then ! = 2k (mod 2k+1),1 > 4k+1 and vy, €
D. We will show that d(vg41) = d(vg+2) = ... = d(vsr) = 2. Suppose to
the contrary that N(v;) — V(P) # 0 for some i € {k+ 1,k +2,...,3k}.
Then there exists a leaf u € Q(T) such that d(u,v;) = d(u, P) > 0. In
order to derive a contradiction, we will compute the possible values for
i. We have d(u,v;) = d(u,vg) — d(v,v9) = d(u,vp) — i and d(v;,v;) =
d(vog,v;) — d(vo,v;) = d(vg,v;) —i . It follows that d(u,v;) = d(u,v;) +
d(vi,v) = d(u,vg) + d(vg,v;) — 2i. Since vg, v; and u are leaves and
T € R, it follows that 2¢ = 2k (mod (2k + 1)). The latter together
with £ 4+ 1 < i < 3k leads immediately to a contradiction. It follows
that d(vkt+1) = d(vky2) = ... = d(vsr) = 2 which means we can choose
D such that vsgy; € D. Let us remove the edge xy = vogvor4 from T
Then ny(T) = n1(Ty)+n(T,)—2,9*(T,) = n—1 and D—vy, is a maximum
k-distance enclaveless set of T,. Thus, W*(T,) + W*(T,) = U*(T). Since
T, = SSf_l is a star with all edges (k — 1)-times subdivided, T, €
R. As T € R, we have d(vg,v) = 2k (mod (2k + 1)) for every vertex
vo # v € QT). Since d(vg, var+1) = 2k + 1, we obtain d(vegy1,v) =
2k (mod (2k + 1)) for every vertex vopy1 # v € (T},) and consequently,
T, € R. This completes the proof. O

Using Lemmma 5.2, we will now characterize the class of trees T
which fulfill the equality kni(T) = 2k — 2kn(T) + (2k + 1)T*(T).

Theorem 5.3. If T is a tree, then kny(T) = 2k—2kn(T)+(2k+1)¥*(T)
if and only if T belongs to R.
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Proof. Suppose first that T € R. If U¥(T) = n — 1, then T = SSf_l
is a star with each edge (k — [)-times subdivided and kn,(T) = 2k —
2kn(T) + (2k 4 1)¥*(T) is obvious. Assume now that U*(T) < n — 2
and that kny(T") = 2k — 2kn(T") + (2k + 1)U (T") for every tree T' € R
with WK(T) < W*(T’) + 1. According to Lemmma 5.2, there exists an
edge zy in T such that T,,T, € R, V¥(T) = ¥¥(T,) + ¥*(T,) and
ni1(T) = ni(Ty) + n1(T,) — 2. By the induction hypothesis, kn(T;) =
2k — 2kn(Ty) + (2k + 1)WK(T,) and kni(Ty) = 2k — 2kn(T,) + (2k +
1)Wk(T,). By adding these equalities we finally conclude that kni(T') =
2k —2kn(T) + (2k+1)¥*(T). Suppose second that T fulfills the equality
kni(T) = 2k — 2kn(T) + (2k + 1)WK(T). If U*(T) = n(T) — 1, then the
equality yields kny(T) = n(T) — 1. This together with diam(T") < 2k
implies that T' = SSF~1 is a star with each edge (k—1)-times subdivided
and T € R is obvious. Now let T be a tree with ¥*(T) < n — 1 that
fulfills the equality kny(T) = 2k — 2kn(T) + (2k + 1)¥*(T) and assume
that 7" € R for all trees T" with U*(T) < U*(T') + 1 and kn1(T") =
2k — 2kn(T") + (2k + 1)T*(T"). According to Lemmma 5.2 there exists
an edge ry in T such that W*(T) = U*(T}) + U*(T,). Since kny(T) =
2k —2kn(T)+ (2k+1)U*(T), it follows that ny(T) = ny(Ty) +n1(T,) — 2,
kni(Ty) = 2k —2kn(Ty) + (2k +1)U*(T,) and kny(T,) = 2k — 2kn(T}) +
(2k + 1)¥*(T,). Note that this means that 7 arises from T, and T,
by adding the edge zy which joins the leaves x and y of T, and T,
respectively. In addition, we conclude that T, T, € R by the induction
hypothesis. The latter together with the observation before implies that
T € R which completes the proof of this theorem. O
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