
Caspian Journal of Mathematical Sciences (CJMS)

University of Mazandaran, Iran

http://cjms.journals.umz.ac.ir

ISSN: 2676-7260

CJMS. 11(1)(2022), 345-357

k-distance enclaveless number of a graph

Doost Ali Mojdeh 1 and Iman Masoumi 2

1 Department of Mathematics, Faculty of Mathematical Sciences,
University of Mazandaran, Babolsar, Iran

2 Department of Mathematics, Tafresh University, Tafresh, Iran

Abstract. For an integer k ≥ 1, a k-distance enclaveless number
(or k-distance B-differential) of a connected graph G = (V,E) is
Ψk(G) = max{|(V − X) ∩ Nk,G(X)| : X ⊆ V }. In this paper, we
establish upper bounds on the k-distance enclaveless number of a
graph in terms of its diameter, radius and girth. Also, we prove
that for connected graphs G and H with orders n and m respec-
tively, Ψk(G × H) ≤ mn − n − m + Ψk(G) + Ψk(H) + 1, where
G ×H denotes the direct product of G and H. In the end of this
paper, we show that the k-distance enclaveless number Ψk(T ) of a
tree T on n ≥ k + 1 vertices and with n1 leaves satisfies inequality

Ψk(T ) ≤ k(2n−2+n1)
2k+1

and we characterize the extremal trees.
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1. Introduction

Distance in graphs is a fundamental concept in graph theory. Let G
be a connected graph. The distance between two vertices u and v in
G, denoted dG(u, v), is the length of a shortest (u, v)-path in G. The
eccentricity eccG(v) of v in G is the distance between v and a vertex
farthest from v in G. The minimum eccentricity among all vertices of
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G is the radius of G, denoted by rad(G), while the maximum eccentric-
ity among all vertices of G is the diameter of G, denoted by diam(G).
Thus, the diameter of G is the maximum distance among all pairs of
vertices of G. A vertex v with eccG(v) = diam(G) is called a periph-
eral vertex of G. A diametral path in G is a shortest path in G whose
length is equal to the diameter of the graph. Thus, a diametral path
is a path of length diam(G) joining two peripheral vertices of G. If
S is a set of vertices in G, then the distance, dG(v, S), from a vertex
v to the set S is the minimum distance from v to a vertex of S; that
is, dG(v, S) = min{dG(u, v) : u ∈ S}. In particular, if v ∈ S, then
d(v, S) = 0. Enclaveless number (B-differential) of graphs is also very
well studied in graph theory. An enclaveless number (B-differential) of
a set X in a graph G is Ψ(X) = |bd(X)| = |B(X)| = |(V −X)∩NG(X)|
so that B(X) is called boundary of X. The enclaveless number (B-
differential) of G, denoted by Ψ(G), is Ψ(G) = max{|B(X)| : X ⊆ V }.
In this paper, we start the study of k-distance enclaveless number in
graphs which combines the concepts of both distance and enclaveless
number in graphs [4]. Let k ≥ 1 be an integer and let G be a graph.
A k-distance enclaveless number (k-distance B-differential) of a set X
in a graph G is Ψk(X) = |bdk(X)| = |Bk(X)| = |(V − X) ∩ Nk,G(X)|
so that Bk(X) is called k-boundary of X. The k-distance enclaveless
number (k-distance B-differential) of G, denoted by Ψk(G), is Ψk(G) =
max{|Bk(X)| : X ⊆ V }. A set D is called k-distance enclaveless set
of G if Bk(D) = V − D. A set D is called maximum k-distance en-
claveless set of G if Ψk(G) = |Bk(D)|. When k = 1, the 1-distance
enclaveless number of G is precisely the enclaveless number of G; that
is, Ψ1(G) = Ψ(G). In 1977, Slater [6] introduced the concept of a en-
claveless set (or B-differential set) in a graph.

Let G = (V,E) be a simple undirected graph with the set of vertices
V = V (G) and the set of edges E = E(G). We refer the reader to [1],[7]
for any terminology and notation not here in. We denote minimum de-
gree of a graph G with δ(G) and maximum degree with ∆(G). The open
neighborhood of a vertex v ∈ V is the set N(v) = {u : uv ∈ E(G)}, while
the closed neighborhood of a vertex v ∈ V is N [v] = N(v)∪{v}. The open
neighborhood of a set S ⊆ V is the set N(S) = ∪v∈SN(v). The closed
neighborhood of a set S ⊆ V is the set N [S] = N(S) ∪ S. Let Ev be the
set of edges incident with v in G that is, Ev = {uv ∈ E(G) : u ∈ N(v)}.
We denote the degree of v by degG(v) = |Ev|.

Let k be a positive integer. For a vertex v ∈ V (G), the open k-
neighborhood Nk,G(v) is the set {u ∈ V (G) : u ̸= v and d(u, v) ≤ k}
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and the closed k-neighborhood Nk,G[v] is the set Nk,G(v)∪{v}. The open
k-neighborhood Nk,G(S) of a set S ⊆ V is the set ∪v∈SNk,G(v), and the
closed k-neighborhood Nk,G[S] of a set S ⊆ V is the set Nk,G(S) ∪ S.
The k-degree of a vertex v is defined as δk,G(v) = degk,G(v) = |Nk,G(v)|.
The minimum and maximum k-degree of a graph G are denoted by
δk(G) and ∆k(G), respectively. For a non-empty subset S ⊆ V , and any
vertex v ∈ V we denote by Nk,S(v) the set of k-neighbors v has in S:
Nk,S(v) := {u ∈ S : d(u, v) ≤ k} and δk,S(v) = |Nk,S(v)|. The graphG is

called distance k-regular if δk(G) = ∆k(G). The k-th powerGk of a graph
G is the graph with vertex set V (Gk) = V (G) and edge set E(Gk) =
{xy : d(x, y) ≤ k}. Now clearly, we have Nk,G(v) = N1,Gk(v) = NGk(v),
Nk,G[v] = N1,Gk [v] = NGk [v], degk,G(v) = deg1,Gk(v) = degGk(v),

δk(G) = δ1(G
k) = δ(Gk) and ∆k(G) = ∆1(G

k) = ∆(Gk). A vertex
v is called k-adjacent to (or k-neighbor with) a vertex w if d(v, w) = k.
A vertex of degree one is called a leaf and the set of leaves of a graph
G is denoted by Ω(G). The number of leaves Ω(G) will be denoted by
n1(G). For a tree T and an edge xy ∈ E(T ), let Tx and Ty denote the
components of T −xy in which the vertices x and y belong to Tx and Ty,
respectively. A complete bipartite graph Km,n with partite sets X,Y
such that |X| = m and |Y | = n. If m = 1, then K1,n is called an star
with n+ 1 vertices. The edge subdivision in a graph G is the following
operation; remove one edge e = xy of G and add a new vertex z and
the edges xz and zy. A k-times subdivided star SSk

t is obtained from a
star K1,t by subdividing each edge by exactly k vertices.

This paper is organized as follows: In Section 2 we study some el-
ementary results on k-distance enclaveless number of G. We establish
upper bounds on the k-distance enclaveless number of a graph in terms
of its diameter, radius and girth in Section 3. Also, we prove that
for the connected graphs G and H with orders n and m respectively,
Ψk(G×H) ≤ mn− n−m+Ψk(G) + Ψk(H) + 1 in Section 4. Finally,
in Section 5, we show that the k-distance enclaveless number Ψk(T ) of
a tree T on n ≥ k + 1 vertices and with n1 leaves satisfies inequality

Ψk(T ) ≤ k(2n−2+n1)
2k+1 and we characterize the extremal trees.

2. Preliminary results

In order to prove recent inequality, the techniques of article [3] have
been used. It is well known that, if H is a subgraph of G and u, v be
two vertices in G, then dG(u, v) ≤ dH(u, v) and Nk,H(u) ⊆ Nk,G(u).
Therefore we have following observation.

Observation 2.1. For k ≥ 1, if H is a spanning subgraph of a graph
G, then Ψk(G) ≤ Ψk(H).
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The following theorem shows that the study of k-distance enclaveless
set of a graph G is lead to the study of k-distance enclaveless set of a
spanning tree T of G.

Theorem 2.2. For k ≥ 1, every connected graph G has a spanning tree
T such that Ψk(T ) = Ψk(G).

Proof. Let D = {v1, . . . , vt} be a maximum k-distance enclaveless set
of G. Thus, |D| = t = Ψk(G). We now partition the vertex set V (G)
into t sets V1, . . . , Vt as follows. Initially, we let Vi = {vi} for all i ∈ [t].
We then consider sequentially the vertices not in D. For each vertex
v ∈ V (G) −D, we select a vertex vi ∈ D at minimum distance from v
in G and add the vertex v to the set Vi. We note that if v ∈ V (G)−D
and v ∈ Vi for some i ∈ [t], then dG(v, vi) = dG(v,D), although the
vertex vi is not necessarily the unique vertex of D at minimum distance
from v in G. Further, since D is a k-distance enclaveless set of G , we
note that dG(v, vi) ≤ k. For each i ∈ [t], let Ti be a spanning tree of
G[Vi] that is distance preserving from the vertex vi; that is, V (Ti) = Vi

and for every vertex v ∈ V (Ti), we have dTi(v, vi) = dG(v, vi). We
now let T be the spanning tree of G obtained from the disjoint union
of the t trees T1, . . . , Tt by adding t − 1 edges of G. We remark that
these added t − 1 edges exist as G is connected. We now consider an
arbitrary vertex, v say, of G. The vertex v ∈ Vi for some i ∈ [t]. Thus,
dT (v, vi) ≤ dTi(v, vi) = dG(v, vi) = dG(v,D) ≤ k. Therefore, the set
D is a k-distance enclaveless set of T , and so Ψk(T ) ≤ |D| = Ψk(G).
However, by Observation 2.1, Ψk(G) ≤ Ψk(T ). Consequently, Ψk(T ) =
Ψk(G). �

We shall also need the following lemma.

Lemma 2.3. Let G be a connected graph that is not a tree, and let C be
a shortest cycle in G. If v is a vertex of G outside of C that |Bk({v})∩
V (C)| ≥ 2k, then there exist two vertices u,w ∈ V (C) ∪ Bk({v}) such
that a shortest (u, v)-path does not contain w and a shortest (v, w)-path
does not contain u.

Proof. Since v is not on C, it has a distance of at least 1 to every vertex
of C. Let u be a vertex of C at minimum distance from v in G. We put
Q = V (C) ∩ Bk({v}). Thus, Q ⊆ V (C) and, by assumption, |Q| ≥ 2k.
Among all vertices in Q, let w ∈ Q be chosen to have maximum distance
from u on the cycle C. Since there are 2k−1 vertices within distance k−1
from u on C, the vertex w has distance at least k from u on the cycle C.
Let Pu be a shortest (u, v)-path and let Pw be a shortest (v, w)-path inG.
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If w ∈ V (Pu), then dG(u,w) < dG(u, v) ≤ k, contradicting our choice of
the vertex u. Therefore, w /∈ V (Pu). Suppose that u ∈ V (Pw). Since C
is a shortest cycle in G, the distance between u and w on C is the same as
the distance between u and w inG. Thus, dG(u,w) = dC(u,w), implying
that dG(v, w) = dG(v, u)+dG(u,w) ≥ 1+dG(u,w) = 1+dC(u,w) ≥ 1+k,
a contradiction. Therefore, u /∈ V (Pw). �

3. Upper bound of the k-distance enclaveless in a graph

In this section we provide various upper bounds on the k-distance
enclaveless number for general graphs.

Theorem 3.1. For k ≥ 1, if G is a connected graph with diameter d,
then

Ψk(G) ≤ 2kn+ n− d− 1

2k + 1
.

This bound is sharp.

Proof. Let P : u0u1 . . . ud be a diametral path in G, joining two periph-
eral vertices u = u0 and v = ud of G. Thus, the length of P is diam(G) =
d. We claim that for every vertex v ∈ G, |V (P ) ∩ Bk({v})| ≤ 2k + 1.
Suppose, to the contrary, that there exists a vertex q ∈ V (G) so that
we have, |V (P ) ∩ Bk({q})| ≥ 2k + 2. (Possibly, q ∈ V (P ).) Now we
put Q = V (P ) ∩ Bk({q}). Then |Q| ≥ 2k + 2. Let i and j be the
smallest and greatest integers respectively, such that ui, uj ∈ Q. We
note that Q ⊆ {ui, ui+1, . . . , uj}. Thus, 2k + 2 ≤ |Q| ≤ j − i+ 1. Since
P is a shortest (u, v)-path in G, we therefore note that dG(ui, uj) =
dP (ui, uj) = j − i ≥ 2k + 1. Let Pi and Pj be shortest (u, q)-path and

(q, v)-path in G. Since ui, uj ∈ Bk({q}), both paths Pu and Pv have
length at most k. Therefore, the (ui, uj)-path obtained by the following
path Pi from ui to q, and then proceeding along the path Pj from q to
uj , has length at most 2k, implying that dG(ui, uj) ≤ 2k, a contradic-

tion. Therefore, for every vertex v ∈ V (G), |V (P ) ∩Bk(v)| ≤ 2k + 1.
Let S be a maximum k-distance enclaveless set of G. Thus, |S| = Ψk(G).
For every vertex x ∈ S, we have |V (P ) ∩ Bk({x})| ≤ 2k + 1, and so
|V (P ) ∩ Bk(S)| ≤ (n − |S|)(2k + 1). However, since S is a k-distance
enclaveless set of G and for any vertex y ∈ P , y ∈ Bk(S), thus we have,
|Bk(S)∩ V (P )| = d+1. Therefore, (n− |S|)(2k+1) ≥ d+1, or, equiv-
alently, Ψk(G) = |S| ≤ (2kn+ n− d− 1)/(2k + 1).

For seeing the sharpness of bound, let G be a path, v1v2 . . . vn, of
order n = ℓ(2k + 1) for some ℓ ≥ 1. Let d = diam(G), and so d =

n − 1 = ℓ(2k + 1) − 1. It is clear Ψk(G) ≤ (2kn+n−d−1)
2k+1 = 2kℓ = n − ℓ.
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Figure 1. For n = 4, V2 = V3 = V4 = K2

The set

S = ∪ℓ−1
i=0{vvk+1+i(2k+1)

}

is a k-distance enclaveless set of G, and so Ψk(G) ≥ |S| = n − ℓ. Con-

sequently, Ψk(G) = n − ℓ = (2kn+n−d−1)
2k+1 . We state this formally as

follows. �

For the family of the graphs we obtain the bound in Theorem 3.1.
For this, let P = v1v2 . . . vn be a path. By replacing each vertex vi, for
2 ≤ i ≤ n−1, on the path with a clique (clique Vi corresponds to vertex
vi) of size at least δ ≥ 1, and adding all edges between v1 and vertices
in V2, adding all edges between vn and vertices in Vn−1, and adding all
edges between vertices in Vi and Vi+1 for 2 ≤ i ≤ n − 2, we obtain a
graph with minimum degree δ achieving the upper bound of Theorem
3.1, see Figure 1.

In general, by applying Theorem 3.1, the k-distance enclaveless num-
ber of a cycle Cn or path Pn of order n ≥ 3, are easily obtained.

Proposition 3.2. For k ≥ 1 and n ≥ 3, Ψk(Pn) = Ψk(Cn) = n −
⌈ n
2k+1⌉.

As a consequence of Theorem 3.1, we have the following upper bound
on the k-distance enclaveless number of a graph in terms of its radius.

Corollary 3.3. For k ≥ 1, if G is a connected graph with radius r, then

Ψk(G) ≤ 2kn+ n− 2r

2k + 1
.

This bound is sharp.

Proof. By Theorem 2.2, the graph G has a spanning tree T such that
Ψk(T ) = Ψk(G). Since adding edges to a graph cannot increase its
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radius, rad(G) ≤ rad(T ). Since T is a tree, we note that diam(T ) ≥
2rad(T )− 1. Applying Theorem 3.1 to the tree T , we have that

Ψk(G) = Ψk(T ) ≤ 2kn+n−d−1
2k+1 ≤ 2kn+n−2r+1−1

2k+1 = 2kn+n−r
2k+1 .

For seeing the upper bound, let G be a path Pn of order n = 2ℓ(2k+1)
for some integer ℓ ≥ 1. Let d = diam(G) and let r = rad(G), and so
d = 2ℓ(2k + 1) − 1 and r = ℓ(2k + 1). In particular, we note that
d = 2r − 1. By Theorem 3.1, Ψk(G) = 2kn+n−d−1

2k+1 = 2kn+n−2r
2k+1 . Then

by replacing each internal vertices on the path with a clique of size at
least δ ≥ 1, we can obtain a graph with minimum degree δ achieving
the upper bound. �

Theorem 3.4. For k ≥ 1, if G is a connected graph with girth g, then

Ψk(G) ≤ 2kn+ n− g

2k + 1
.

Proof. If g ≤ 2k + 1, then upper bound holds by using Proposition 3.2
and Corollary 3.3. Let g ≥ 2k + 2, and C be a shortest cycle in G, of
length g. We note that the distance between two vertices in C is exactly
equal to the distance between them in G. Now we consider the following
two cases, depending on the value of the girth of graphs.

Case 1. 2k + 2 ≤ g ≤ 4k + 2. In this case, we show that Ψk(G) ≤
n−⌈ g

2k+1⌉ = n−2. Suppose to the contrary, that Ψk(G) = n−1. Then,
G contains a vertex v that is within distance k from every vertex of G.
In particular, d(u, v) ≤ k for every vertex u ∈ V (C). If v ∈ V (C), then,
since C is a shortest cycle in G, we note that dC(u, v) = dG(u, v) ≤ k
for every vertex u ∈ V (C). However, the lower bound condition on the
girth, namely g ≥ 2k+2, implies that no vertex on the cycle C is within
distance k in C from every vertex of C, a contradiction. Therefore,
v /∈ V (C). By Lemma 2.3, there exist two vertices u,w ∈ V (C) such
that a shortest (v, u)-path does not contain w and a shortest (v, w)-path
does not contain u. We show that, we can choose u and w to be adjacent
vertices on C. Let w be a vertex of C at maximum distance, say dw,
from v in G. Let w1 and w2 be the two neighbors of w on the cycle C. If
dG(v, w1) = dw, then we can take u = w1, and the desired property (that
a shortest (v, u)-path does not contain w and a shortest (v, w)-path does
not contain u) holds. Hence we may assume that dG(v, w1) ̸= dw. By
our choice of the vertex w, we note that dG(v, w1) ≤ dw, implying that
dG(v, w1) = dw − 1. Similarly, we may assume that dG(v, w2) = dw − 1.
Let Pw be a shortest (v, w)-path. At most one of w1 and w2 belong to
the path Pw. Renaming w1 and w2, if necessary, we may assume that
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w1 does not belong to the path Pw. In this case, letting u = w1 and let-
ting Pu be a shortest (v, u)-path, we note that w /∈ V (Pu). As observed
earlier, u /∈ V (Pw). This shows that u and w can indeed be chosen to be
neighbors on C. Let x be the last vertex in common with the (v, u)-path
Pu, and the (v, w)-path, Pw. Possibly, x = v. Then, the cycle obtained
from the (x, u)-section of Pu by proceeding along the edge uw to w, and
then the following (w, x)-section of Pw back to x, has length at most
dG(v, u) + 1 + dG(v, w) ≤ 2k + 1, contradicting the fact that the girth
g ≥ 2k + 2. Therefore, Ψk(G) ≤ n− 2, as desired.

Case 2. g ≥ 4k + 3. Let S be a maximum k-distance enclaveless set
of G, and so |S| = Ψk(G). Let K = S ∩ V (C) and let L = S − V (C).
Thus, S = K ∪ L. If L = ∅, then S = K and the set K is a k-distance
enclaveless set of C, implying by Proposition 3.2, that Ψk(G) = |S| =
|K| ≤ Ψk(Cg) = n − ⌈ g

2k+1⌉, and the theorem holds. Hence we may

assume that |L| ≥ 1. We wish to show that |K|+ |L| = |S| ≤ n−⌈ g
2k+1⌉.

Suppose to the contrary that,

|K| ≥ n− ⌈ g

1 + 2k
⌉+ 1− |L|.

As observed earlier, the distance between two vertices in V (C) is exactly
the same in C as in G. This implies that each vertex of K (recall that
K ⊆ V (C)) is within distance k from exactly 2k+1 vertices of C. Thus,
the set Bk(K) ∩ V (C) has at least |K|(2k + 1) vertices where

|K|(2k + 1) ≥ (n− ⌈ g
1+2k⌉+ 1− |L|)(2k + 1) ≥

(n− g+2k
2k+1 + 1− |L|)(2k + 1) = 2kn+ n− g + 1− |L|(2k + 1).

Thus, clearly we have |K|(2k + 1) ≥ n− g + 1− |L|(2k + 1). Conse-
quently, since |V (Cc)| = n−g, there are at most −1+|L|(2k+1) vertices
of V (C)c that do not belong to set Bk(K), and so they must belong to set
Bk(L). Thus, by the Pigeonhole Principle, there is at least one vertex,
say v, in L that |Bk({v})∩ V (C)| ≥ 2k. By Lemma 2.3, there exist two
vertices u,w ∈ V (C) that are both u,w ∈ Bk({v}) and such that a short-
est (u, v)-path, Pu say, (from u to v) does not contain w and a shortest
(w, v)-path, Pw say, (from w to v) does not contain u. Analogously as in
the proof of Lemma 2.3, we can choose the vertex u to be a vertex of C
at minimum distance from v in G. Thus, the vertex u is the only vertex
on the cycle C that belongs to the path Pu. Combining the paths Pu and
Pw produces a (u,w)-walk of length at most dG(u, v) + dG(v, w) ≤ 2k,
implying that dG(u,w) ≤ 2k. Since C is a shortest cycle in G, we
therefore have that dC(u,w) = dG(u,w) ≤ 2k. The cycle C yields two
(w, u)-paths. Let Pwu be the (w, u)-path on the cycle C of shorter length
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(starting at w and ending at u). Thus, Pwuhas length dC(u,w) ≤ 2k.
Note that the path Pwu belongs entirely on the cycle C. Let x ∈ V (C)
be the last vertex in common with the (w, v)-path, Pw, and the (w, u)-
path, Pwu. Possibly, x = w. However, note that x ̸= u since u /∈ V (Pw).
Let y be the first vertex in common with the (x, v)-subsection of the
path Pw and with the (u, v)-path Pu. Possibly, y = v. However, note
that y ̸= x since x /∈ V (Pu) and V (Pu) ∩ V (C) = {u}. Using the (x, u)-
subsection of the path Pwu, the (x, y)-subsection of the path Pw, and
the (u, y)-subsection of the path Pu produces a cycle in G of length at
most dG(u, v) + dG(w, v) + dG(u,w) ≤ k + k + 2k = 4k, contradicting
the fact that the girth g ≥ 4k+3. Therefore, Ψk(G) = |S| = |K|+ |L| ,
as desired. �

4. Direct Product Graphs

The direct product graph, G × H, of graphs G and H is the graph
with vertex set V (G) × V (H) and with edges (g1, h1)(g2, h2), where
g1g2 ∈ E(G) and h1h2 ∈ E(H). Let A ⊆ V (G×H). The projection of
A onto G is defined as PG(A) = {g ∈ V (G) : (g, h) ∈ A for some h ∈
V (H)}. Similarly, the projection of A onto H is defined as PH(A) =
{h ∈ V (H) : (g, h) ∈ A for some g ∈ V (G)}. For a detailed discussion
on direct product graphs, we refer the reader to the handbook on graph
products [2]. Recall that for every graph G, Ψ1(G) = Ψ(G).

Lemma 4.1. Let G and H be connected graphs. If D is a k-distance
enclaveless set of G×H, then PG(D) is a k-distance enclaveless set of
G and PH(D) is a k-distance enclaveless set of H.

Proof. Let D ⊆ V (G × H) be a k-distance enclaveless set of G × H.
We firstly show that PG(D) is a k-distance enclaveless set of G. Or,
equivalently, we have to show that Bk(PG(D)) = V (G) − PG(D). If
g ∈ Bk(PG(D)), then we have clearly, 0 < dG(g, PG(D)) ≤ k. Thus,
g /∈ PG(D) and then Bk(PG(D)) ⊆ V (G) − PG(D). Hence, we assume
that g ∈ V (G)−PG(D). Let h be an arbitrary vertex in V (H). Since g /∈
PG(D), then (g, h) /∈ D. However, the set D is a k-distance enclaveless
set of G×H, and so (g, h) ∈ Bk(D) ; that is, dG×H((g, h), D) ≤ k. Let
(g0, h0), (g1, h1), . . . , (gr, hr) be a shortest path from (g, h) toD in G×H,
where (g, h) = (g0, h0) and (gr, hr) ∈ D. By assumption, 1 ≤ r ≤ k. For
i ∈ {0, . . . , r − 1}, the vertices (gi, hi) and (gi+1, hi+1) are adjacent in
G×H. Hence, by the definition of the direct product graph, the vertices
gi and gi+1 are adjacent in G, implying that g0g1...gr is a (g0, gr)-walk
in G of length r. This in turn implies that there is a (g0, gr)-path in G
of length r. Recall that g = g0 and 1 ≤ r ≤ k. Since (gr, hr) ∈ D, the
vertex gr ∈ PG(D). Hence, there is a path from g to a vertex of PG(D)
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in G of length at most k. Therefore, g ∈ Bk(PG(D)). Analogously, the
set PH(D) is a k-distance enclaveless set of H. �
Theorem 4.2. If G and H are connected graphs of the orders n and
m, respectively. Then

Ψk(G×H) ≤ mn− n−m+Ψk(G) + Ψk(H) + 1.

Proof. Let D ⊆ V (G ×H) be a maximum k-distance enclaveless set of
G × H. Suppose, to the contrary, that |D| ≥ mn − n − m + Ψk(G) +
Ψk(H) + 2. We will refer to this inequality as (∗). By Lemma 4.1,
PG(D) is a k-distance enclaveless set of G and PH(D) is a k-distance
enclaveless set ofH. Therefore, we have that |D| ≤ n−|PG(D)| ≤ Ψk(G)
and |D| ≤ m − |PH(D)| ≤ Ψk(H). If Ψk(G) = n − 1, then by (∗),
Ψk(H) ≥ |D| ≥ mn − m + 1 + Ψk(H), a contradiction. Therefore,
Ψk(G) ≤ n−2. Analogously, Ψk(H) ≤ n−2. Recall that n−|PG(D)| ≤
Ψk(G). We now remove vertices from the set PG(D) until we obtain
a set, DG say, of cardinality exactly n − 1 − Ψk(G). Thus, DG is a
proper subset of PG(D) of cardinality n − 1 − Ψk(G). Since DG is not
a k-distance enclaveless set of G, there exists a vertex g ∈ V (G) such
that g /∈ Bk(DG); that is, dG(g,DG) > k. Let DG = {g1, . . . , gt}, where
t = n − 1 − Ψk(G) ≥ 1. For each i ∈ [t], there exists a (not necessarily
unique) vertex hi ∈ V (H) such that (gi, hi) ∈ D (since DG ⊆ PG(D)).
We now consider the set D0 = {(g1, h1), . . . , (gt, ht)}, and note that
D0 ⊂ D and |D0| = n− 1−Ψk(G). By (*), we note that

m− |PH(D −D0)| ≥ |D −D0| = |D| − |D0| ≥
(mn− n−m+Ψk(G) + Ψk(H) + 2)− (n− 1−Ψk(G))

= mn− 2n−m+ 3 + 2Ψk(G) + Ψk(H) > Ψk(H).

Hence, there exists a vertex h ∈ V (H) such that h /∈ Bk(PH(D −D0));
that is, dH(h, PH(D − D0)) > k. We now consider the vertex (g, h) ∈
V (G × H). Since D is a k-distance enclaveless set of G × H, then
there exists the vertex (g∗, h∗) ∈ D such that (g, h) ∈ Bk{(g∗, h∗)}.
A similar proof as the proof of Lemma 4.1 shows that dG(g, g

∗) ≤ k
and dH(h, h∗) ≤ k. If (g∗, h∗) ∈ D − D0, then h∗ ∈ PH(D − D0),
implying that dH(h, PH(D − D0)) ≤ dH(h, h∗) ≤ k, a contradiction.
Hence, (g∗, h∗) ∈ D0. This implies that g∗ ∈ PG(D0) = DG. Thus,
dG(g,DG) ≤ dG(g, g

∗) ≤ k, contradicting the fact that dG(g,DG) > k.
Therefore, (*) inequality that |D| ≥ mn− n−m+Ψk(G) + Ψk(H) + 2
must be false, and the result follows. �

5. Upper bound for k-distance enclaveless number of a tree

In this section we study the upper bound of k-distance enclaveless
number of trees.
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Theorem 5.1. Let T be a tree of order n(T ) ≥ k + 1 and with n1(T )
leaves. Then

kn1(T ) ≥ 2k − 2kn(T ) + (2k + 1)Ψk(T ).

Proof. We use induction on n, the order of a tree. The result is trivial for
a tree of order k+1 due to diam(T ) ≤ k or equivalently Ψk(T ) = n− 1.
Let T be a tree of order n > k + 1, diam(T ) ≥ 2k + 1 and assume
that kn1(T

′) ≥ 2k − 2kn(T ′) + (2k + 1)Ψk(T ′) for each tree T ′ with
k + 1 < n(T ′) ≤ n− 1. Let D be a maximum k-distance enclaveless set
of T having property that, let P = v0v1 · · · vl be a longest path in T and
let T ′ = T−{v0} be the subtree of T . Clearly, we have l ≥ 2k+1. With-
out loss of generality we may assume that P is chosen in such a way that
dk,T (vk) is as large as possible. We consider two cases: dk,T (vk) > k+1
or dk,T (vk) = k + 1.
Case 1. dk,T (vk) > k + 1.

In T ′ we have kn1(T
′) ≥ 2k−2kn(T ′)+(2k+1)Ψk(T ′) (by induction),

and as n1(T
′) = n1(T )− 1, n(T ′) = n(T )− 1 and Ψk(T ) = Ψk(T ′) + 1,

therefore, k(n1(T ) − 1) ≥ 2k − 2k(n(T ) − 1) + (2k + 1)(Ψk(T ) − 1) =
2k − 2kn(T ) + 2k + (2k + 1)Ψk(T ) − 2k − 1 or equivalently, kn1(T ) ≥
2k − 2kn(T ) + (2k + 1)Ψk(T ) + k − 1 ≥ 2k − 2kn(T ) + (2k + 1)Ψk(T )
due to k ≥ 1.

Case 2. If dk,T (vk) = k + 1, we consider two subcases: Ψk(T ) <

Ψk(T ′) + 1 or Ψk(T ) = Ψk(T ′) + 1. there are two subcases:

Subcase 2.1. If Ψk(T ) < Ψk(T ′) + 1, then since clearly, Ψk(T ′) ≤
Ψk(T ), we conclude Ψk(T ′) = Ψk(T ). By induction, kn1(T

′) ≥ 2k −
2kn(T ′) + (2k + 1)Ψk(T ′) and consequently kn1(T ) ≥ 2k − 2kn(T ) +
(2k+1)Ψk(T ) as n1(T ) = n1(T

′), n(T ′) = n(T )−1 and Ψk(T ′) = Ψk(T ).

Subcase 2.2. If Ψk(T ) = Ψk(T ′) + 1, then vk+1 /∈ Nk,T (Ω(T )) (other-

wiseD−{vk} would be a k-distance enclaveless set of T and 1+Ψk(T ′) >
Ψk(T ))and therefore l ≥ 2k + 2. By T1 and T2 we denote the subtrees
of T − vk+1vk+2 to which belong vertices vk+2 and vk+1, respectively. If
n(T1) = k+1, then certainly kn1(T1) ≥ 2k− 2kn(T1) + (2k+1)Ψk(T1).
Thus assume that n(T1) ≥ k+2. Let Ω2 denotes the set Ω(T2)∩Ω(T ) and
letD2 be a maximum k-distance enclaveless set of T2 which does not con-
tain vk+1. Since dk,T (vk) = k+1, from the choice of P , it follows that all
k-neighbours of vk+1 in T2 are of degree k+1 and this implies |Ω2| = |D2|.
It is easy to observe that, Ψk(T ) = Ψk(T1) + Ψk(T2) = Ψk(T1) + |D2|
and n(T ) = n(T1) + |Ω2| + |D2| + 1. If vk+2 is an leaf of T1, then
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we have n1(T ) = n1(T1) + |Ω2| − 1, otherwise n1(T ) = n1(T1) + |Ω2| ≥
n1(T1)+ |Ω2|−1 as well. Now, since n(T1) ≥ k+2; we have by induction
kn1(T1) ≥ 2k−2kn(T1)+(2k+1)Ψk(T1). In both cases, for n(T1) = k+1
and for n(T1) ≥ k+2 we get 2k−2kn(T1)+(2k+1)Ψk(T1) ≤ kn1(T1) ≤
kn1(T )−k|Ω2|+k. Thus 2k−2k(n(T )−|Ω2|−|D2|−1)+(2k+1)(Ψk(T )−
|D2|) ≤ kn1(T1) ≤ kn1(T )−k|Ω2|+k and 2k−2kn(T )+(2k+1)Ψk(T ) ≤
2k − 2kn(T ) + (2k + 1)Ψk(T ) + k(|Ω2|+ 1)− |D2| ≤ kn1(T ). �

By ℜ we denote the family of all trees in which the distance between
any two distinct leaves is equevalent to 2k modulo 2k + 1; i.e., a tree
T ∈ ℜ if d(x, y) ≡ 2k ( mod 2k+1) for two distinct vertices x, y ∈ Ω(T ).
The next lemma describes main properties of trees belonging to ℜ.

Lemma 5.2. If T is a tree belonging to the family ℜ and Ψk(T ) < n−1,
then there exists an edge xy in T such that both Tx and Ty belong to ℜ,
Ψk(T ) = Ψk(Tx) + Ψk(Ty) = and n1(T ) = n1(Tx) + n1(Ty)− 2.

Proof. Let T ∈ ℜ with Ψk(T ) ≤ n−2 and let P = v0v1 . . . vl be a longest
path in T . In addition, let D be a maximum k-distance enclaveless set of
T containing the vertex vk. Then l ≡ 2k (mod 2k+1), l ≥ 4k+1 and vk ∈
D. We will show that d(vk+1) = d(vk+2) = . . . = d(v3k) = 2. Suppose to
the contrary that N(vi)− V (P ) ̸= ∅ for some i ∈ {k + 1, k + 2, . . . , 3k}.
Then there exists a leaf u ∈ Ω(T ) such that d(u, vi) = d(u, P ) > 0. In
order to derive a contradiction, we will compute the possible values for
i. We have d(u, vi) = d(u, v0) − d(v, v0) = d(u, v0) − i and d(vi, vl) =
d(v0, vl) − d(v0, vi) = d(v0, vl) − i . It follows that d(u, vl) = d(u, vi) +
d(vi, vl) = d(u, v0) + d(v0, vl) − 2i. Since v0, vl and u are leaves and
T ∈ ℜ, it follows that 2i ≡ 2k (mod (2k + 1)). The latter together
with k + 1 ≤ i ≤ 3k leads immediately to a contradiction. It follows
that d(vk+1) = d(vk+2) = . . . = d(v3k) = 2 which means we can choose
D such that v3k+l ∈ D. Let us remove the edge xy = v2kv2k+l from T .
Then n1(T ) = n1(Tx)+n(Ty)−2,Ψk(Tx) = n−1 andD−vk is a maximum

k-distance enclaveless set of Ty. Thus, Ψ
k(Tx)+Ψk(Ty) = Ψk(T ). Since

Tx = SSk−1
t is a star with all edges (k − 1)-times subdivided, Tx ∈

ℜ. As T ∈ ℜ, we have d(v0, v) = 2k (mod (2k + 1)) for every vertex
v0 ̸= v ∈ Ω(T ). Since d(v0, v2k+1) = 2k + 1, we obtain d(v2k+1, v) =
2k (mod (2k+1)) for every vertex v2k+1 ̸= v ∈ Ω(Ty) and consequently,
Ty ∈ ℜ. This completes the proof. �

Using Lemmma 5.2, we will now characterize the class of trees T
which fulfill the equality kn1(T ) = 2k − 2kn(T ) + (2k + 1)Ψk(T ).

Theorem 5.3. If T is a tree, then kn1(T ) = 2k−2kn(T )+(2k+1)Ψk(T )
if and only if T belongs to ℜ.
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Proof. Suppose first that T ∈ ℜ. If Ψk(T ) = n − 1, then T = SSk−1
t

is a star with each edge (k − l)-times subdivided and kn1(T ) = 2k −
2kn(T ) + (2k + 1)Ψk(T ) is obvious. Assume now that Ψk(T ) ≤ n − 2
and that kn1(T

′) = 2k− 2kn(T ′)+ (2k+1)Ψk(T ′) for every tree T ′ ∈ ℜ
with Ψk(T ) < Ψk(T ′) + 1. According to Lemmma 5.2, there exists an
edge xy in T such that Tx, Ty ∈ ℜ, Ψk(T ) = Ψk(Tx) + Ψk(Ty) and
n1(T ) = n1(Tx) + n1(Ty) − 2. By the induction hypothesis, kn1(Tx) =

2k − 2kn(Tx) + (2k + 1)Ψk(Tx) and kn1(Ty) = 2k − 2kn(Ty) + (2k +

1)Ψk(Ty). By adding these equalities we finally conclude that kn1(T ) =

2k−2kn(T )+(2k+1)Ψk(T ). Suppose second that T fulfills the equality
kn1(T ) = 2k − 2kn(T ) + (2k + 1)Ψk(T ). If Ψk(T ) = n(T )− 1, then the
equality yields kn1(T ) = n(T ) − 1. This together with diam(T ) ≤ 2k

implies that T = SSk−1
t is a star with each edge (k−1)-times subdivided

and T ∈ ℜ is obvious. Now let T be a tree with Ψk(T ) < n − 1 that
fulfills the equality kn1(T ) = 2k − 2kn(T ) + (2k + 1)Ψk(T ) and assume
that T ′ ∈ ℜ for all trees T ′ with Ψk(T ) < Ψk(T ′) + 1 and kn1(T

′) =
2k − 2kn(T ′) + (2k + 1)Ψk(T ′). According to Lemmma 5.2 there exists
an edge xy in T such that Ψk(T ) = Ψk(Tx) + Ψk(Ty). Since kn1(T ) =

2k−2kn(T )+(2k+1)Ψk(T ), it follows that n1(T ) = n1(Tx)+n1(Ty)−2,

kn1(Tx) = 2k−2kn(Tx)+(2k+1)Ψk(Tx) and kn1(Ty) = 2k−2kn(Ty)+

(2k + 1)Ψk(Ty). Note that this means that T arises from Tx and Ty

by adding the edge xy which joins the leaves x and y of Tx and Ty,
respectively. In addition, we conclude that Tx, Ty ∈ ℜ by the induction
hypothesis. The latter together with the observation before implies that
T ∈ ℜ which completes the proof of this theorem. �
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