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Abstract. We construct some types of universal closure opera-
tions induced by certain collection of morphisms. For this purpose,
we use Lawvere-Tierney topologies and universal closure operations
that correspond to each other to establish the equivalent conditions
over the collection of morphisms. In this way we use multiple sieves
instead of principal sieves for constructing results. Examples are
also given to illustrate the established results.
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1. Introduction

Closure operations (also closure operators) have been used in broad
areas of algebra, Birkhoff [2, 3] and Pierce [13]. Also Kuratowski [11],
and Čech [4], studied closure operations intensively in topology. Early
appearances of closure operators can be found in logic by Hertz and
Tarski, see [7, 14], before Birkhoff’s book on lattice theory ([2]) led to
more focused investigations on the subject.

Category theory provides a variety of notions which expand on the
lattice theoretic concept of closure operation, see [10, 6]. The notions of
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Grothendieck topology and Lawvere-Tierney topology provide standard
tools in sheaf and topos theory and are most conveniently described by
particular closure operators [9, 12].

A Lawvere-Tierney topology on a topos is a way of saying that some-
thing is right locally. Unlike a Grothendieck topology, this is true di-
rectly at the logic stage, defining a geometric logic. In fact, it is a general-
ization of Grothendieck topology in this sense: If C is a small category,
then choosing a Grothendieck topology on C and a Lawvere–Tierney
topology in the presheaf topos SetC

op
on C is equivalent.

Throughout this article, let X be a small category and M be a set
of morphisms of X . The collection, X1/x, of all the X -morphisms with
codomain x is a preordered class by the relation f ≤ g if there exists
a morphism h such that f = g ◦ h. The equivalence relation generated
by this preorder is f ∼ g if f ≤ g and g ≤ f . For a class M of X -
morphisms, we write f ∼ M whenever f ∼ m for some m ∈ M. We say
M is saturated provided that f ∈ M whenever f ∼ M.

Definition 1.1. ([12]). Given an object x in the category C, a sieve
on x is a set S of arrows with codomain x such that f ∈ S and the
composite f ◦ h is defined implies f ◦ h ∈ S.

Domain and codomain of a morphism f denoted by d0f and d1f
respectively. Recall that ([12]) a sieve in X generated by a morphism f
is called a principal sieve and is denoted by ⟨f⟩. Moreover, for a sieve S
on x and a morphism f with d1f = x, S · f = {g : f ◦ g ∈ S}.

Remark 1.2. Note that, in general, M/x is a proper class. X is called
M-wellpowered ([5]), if there is a skeleton M0 of M such that each
class M0/X is a set; equivalently, if M/x, up to isomorphism can be
labeled by a small set for every object x. We say X is weakly M-
wellpowered provided that for each x ∈ X , {⟨f⟩ | d1f = x, f ∈ M} is a
set. Obviously, X is weakly M-wellpowered if it is M-wellpowered.

For a sieve S ⊆ X1/x, and a morphism f with codomain x, the class
of all the largest elements w in X1/d0f satisfying f ◦ w ≤ s for some
s ∈ S is denoted by (f ⇒ S), see [8]. Obviously, for a sieve S on x,
(f ⇒ S) is just the class of maximums of S · f . Also the class of all
maximal elements of S · f denoted by [f ⇒ S].

Definition 1.3. ([8]). A class M of X−morphisms is said to satisfy
the principality property, if for each x, f ∈ X1/x and m ∈ M/x, (f ⇒
⟨m⟩) ∩M/d0f ̸= ∅.

In fact, class M has the principality property whenever we can gen-
erate any sieve ⟨m⟩ · f with one element belonging to the M/d0(f).
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Let Ω be the subobject classifier of SetX
op
, see [12]. If M satisfies

the principality and is weakly M-wellpowered, the map M : X op → Set
with M(x) = {⟨f⟩ | f ∈ M/x} and for h : y → x, M(h) : M(x) → M(y)
the function taking ⟨g⟩ to ⟨g⟩ ·h is a functor and subobject of Ω, see [8].
With the same conditions we can generalize the presheaf M : X op → Set
and obtain a subobject of Ω by the following lemma:

Lemma 1.4.

(1) Every class M of morphisms of X which satisfies the principality
property and is weakly M-wellpowered yields a subobject Mn :
X op → Set of Ω for every n ≤ card(M).

(2) Every subobject Mn of Ω yields a class M of morphisms of X
which is saturated.

Proof.

(1) for n ≤ card(M) define

Mn(x) = {⟨f1, f2, · · · , fn⟩ | fi ∈ M/x, i = 1, · · · , n}
and for h : y → x, Mn(h) : Mn(x) → Mn(y) the function taking
⟨g1, g2, · · · , gn⟩ to ⟨g1, g2, · · · , gn⟩ · h is a functor and subobject
of Ω. Note that ⟨g1, g2, · · · , gn⟩ · h = (⟨g1⟩ · h) ∪ (⟨g2⟩ · h) ∪ . . . ∪
(⟨gn⟩ · h) and principality property implies that each term in
above union is a principal sieve with generators of M/y and so
⟨g1, g2, · · · , gn⟩ · h has at most n generators which is in M/y.

(2) Let Mn : X op → Set be a subobject of Ω. Then for each object
x ∈ X we can define M/x consists of all generators belongs to
some members of Mn(x). If f ∈ M and g ∼ f , then there exists
sieve S on d1f such that f is a maximal element (generator) of
S. Since f ∼ g so ⟨f⟩ = ⟨g⟩ and thus g also is a maximal element
(generator) of S. Therefore M is saturated.

□

Definition 1.5. Let M be a set of X -morphisms. M is said to have:

(1) enough retractions, if for all objects x in X , M/x has a retrac-
tion.

(2) almost enough retractions, if for all objects x in X , M/x = ∅ or
M/x has a retraction.

(3) the n-identity property if for all objects x in X and for all sieves S
on x whenever MS = {f ∈ X1/x | card([f ⇒ S] ∩M/d0f) ≤ n}
has at the most n maximal elements which are in M/x, then
1x ∈ MS .

(4) the n-maximal property if for all objects x in X and for all
sieves S on x, whenever S ∩M/x ̸= ∅, then S has at the most
n maximal elements which are in M/x and not less than one.
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(5) the n-quasi meet property if for all objects x in X andm1, ...,mk ∈
M/x and n1, ..., nl ∈ M/x such that k, l ≤ n, there exists maxi-
mum elements hi ∈ [mi ⇒ ⟨n1, ..., nl⟩] such that mi ◦ hi ∼ M/x
for i = 1, ..., k.

Let T : X op → Set be the terminal object defined by T (x) = {Tx},
where Tx is the maximal sieve on x.

Remark 1.6. In the previous definition enough retractions implies almost
enough retractions. Also n-maximal property implies almost enough
retractions, because total sieve Tx that contains all morphisms with
codomain x, intersect M/x and so contains at most n maximal elements
which are in M/x. Since 1x ∈ Tx so at least has a retraction.

Definition 1.7. Consider functor category SetX
op
.

(a) For two subobjects A,B : X op → Set of Ω in SetX
op
, we write

A ≤ B provided that for all objects x ∈ X , A(x) ⊆ B(x) and
we write A ∧ B for pointwise intersection, i.e. (A ∧ B)(x) =
A(x) ∩B(x);

(b) For parallel maps Φ,Ψ : A → Ω in SetX
op
, define Φ ⪯ Ψ if

Φx(s) ⊆ Ψx(s) for all x ∈ X and s ∈ A(x).

Remark 1.8. In the above lemma presheaf Mn(x) consists of all sieves
with at most n generators which belong to M/x. We can choose all or
some of the n generators equally and that means Mn−1 ≤ Mn for each
n > 1 (Note that M1 = M).

Corollary 1.9. Let M be a class of X -morphisms that satisfies the prin-
cipality property and is weakly M-wellpowered. For each n the induced
presheaves satisfy in the following inequality:

M ≤ M2 ≤ · · · ≤ Mn ≤ Mn+1 ≤ · · · ≤ Ω(x).

Proof. Straightforward. □

Definition 1.10. ([12]). A subobject A : X op → Set of Ω in SetX
op

is
said to be:

(1) a filter provided that for each object x in X , A(x) is a filter,
(i.e. for two sieves S1, S2 on x, if S1 ⊆ S2 and S1 ∈ A(x) then
S2 ∈ A(x)).

(2) closed under binary intersection provided that for each object
x in X , A(x) is closed under binary intersection, (i.e. for two
sieves S1, S2 on x, if S1, S2 ∈ A(x) then S1 ∩ S2 ∈ A(x)).

Given a subobject A of Ω, each sieve S on an object x yields a sieve SA

on x given by SA = {f | d1f = x, S ·f ∈ A(d0f)}. Since SA·f = (S ·f)A,
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Â defined to take each object x to Â(x) = {SA | S is a sieve on x} and

each morphism g : x → y to Â(g) : Â(y) → Â(x) taking SA to SA · g, is
easily seen to be a subobject of Ω, see [8].

Theorem 1.11. If M satisfies the principality property and Mn is the
associated presheaf, or if Mn is a subobject of Ω and M is the associated
saturated class, then:

(1) T ≤ Mn iff M has enough retractions;

(2) M̂n ∧ T ≤ Mn iff M has almost enough retractions;

(3) M̂n ∧Mn ≤ T iff M has the n-identity property;
(4) Mn is a filter iff M has the n-maximal property;
(5) Mn is closed under binary intersection iff M has the n-quasi

meet property.

Proof. (1) If Tx ⊆ Mn(x), then 1x ∈ Mn(x) and so one of gener-
ators of Mn(x) generates 1x and this implies the generator is
retraction. Converse is obvious.

(2) For given x ∈ X , M̂n(x)∩T (x) ⊆ Mn(x) if and only if M̂n(x)∩
Tx ̸= ∅ or Tx ∈ Mn(x) if and only if M/x = ∅ or M/x has a
retraction if and only if M has almost enough retractions.

(3) For given x ∈ X , M̂n(x) ∩ Mn(x) ⊆ Tx if and only if SM ∈
M̂n(x) ∩Mn(x) implies that SMn = Tx if and only if SMn has
some maximal in M/x less than n implies that 1x ∈ SMn if and
only if M has the n-identity property.

(4) Mn is a filter if and only if for each x ∈ X , S ∈ Mn(x) and
S ⊆ S′ implies S′ ∈ Mn(x) if and only if S′ = ⟨k1, k2, . . . , kn⟩
for some k1, k2, . . . , kn ∈ M if and only if M has the n-maximal
property.

(5) Mn is closed under binary intersection if and only if for each
x ∈ X , ⟨f1, f2, · · · , fn⟩, ⟨g1, g2, . . . , gn⟩ ∈ Mn(x) implies that
⟨f1, f2, . . . , fn⟩∩⟨g1, g2, . . . , gn⟩ ∈ Mn(x) if and only if f1, f2, . . . fn
and g1, g2, . . . , gn ∈ M/x implies that there exists fi ∈ [mi ⇒
⟨ni⟩] for i = 1, . . . , n, such that mi ◦ fi ∼ M/x if and only if M
has the n-quasi-meet property.

□

2. Main result

According to the construction stated in [8], each class M with princi-
pality property which is satisfy in certain conditions induces a Lawvere-
Tierney topology j : Ω → Ω and then each Lawvere-Tierney topology
induces an universal closure operation c. Now we consider subpresheaves
of Ω which is obtained by k-sieves (sieve with minimum k generators)
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where k ≤ n, namely Mn, and study universal closure operation induced
by k-sieves, k ≤ n, namely cn.

Definition 2.1. In a category C with finite limits, a subobject classifier
is a monomorphism, t : 1 → Ω such that to every monomorphism S ↣ X
in C there is a unique arrow Φ which, with the given monomorphism,
forms a pullback square

S

p.b.

��

��

// 1��

t
��

X
Φ
// Ω

In other words, every subobject is uniquely a pullback of a universal
monomorphism t.

With this motivation, see [12], the proposed subobject classifier Ω for
the topos SetsX

op
is defined on objects by

Ω(C) = {S |S is a sieve on x inX}

and on arrows g : y → x by

(−) · g : Ω(x) → Ω(y) and S · g = {h | g ◦ h ∈ S}.

We know subobject i : Mn ↣ Ω in SetX
op

associated to map jn :
Ω → Ω via the following pullback square, see [12],

Mn

p.b.

��

i
��

!Mn // 1��

t
��

Ω
jn
// Ω

Note that for a given Mn, jn is defined by the maps jnx that take
each sieve S on x to set SMn = {f | d1f = x, S · f ∈ Mn(d0f)} and
for a given j, M is defined by M(x) = {S : jx(S) = Tx}. With M
and j corresponding to each other, we obviously have jx(S) = Tx iff
S ∈ Mn(x).

Definition 2.2. ([12]). Let Ω be its subobject classifier of the topos
SetsX

op
. A Lawvere-Tierney topology is a map j : Ω → Ω in SetsX

op

with the following three properties:

(1) j ◦ t = t;
(2) j ◦ j = j;
(3) j ◦ ∧ = ∧ ◦ (j × j).

Corollary 2.3. Let M be a class of X -morphisms that satisfies the
principality property. For each n the induced Lawvere-Tierney topologies
satisfy in the following inequality:
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j ⪯ j2 ⪯ · · · ⪯ jn ⪯ jn+1 ⪯ · · · .

Proof. Straightforward. □

Theorem 2.4. With jn : Ω −→ Ω and subobject Mn of Ω corresponding
to each other, we have:

(1) jn ◦ t = t iff T ≤ Mn;

(2) jn ⪯ jn ◦ jn iff M̂n ∧ T ≤ Mn;

(3) jn ◦ jn ⪯ jn iff M̂n ∧Mn ≤ T ;
(4) jn ◦ ∧ ⪯ ∧ ◦ (jn × jn) iff Mn is a filter;
(e) ∧◦ (jn× jn) ⪯ jn ◦∧ iff Mn is closed under binary intersection.

Proof. (1) Let jn ◦ t = t. If x ∈ X , then jnx(Tx) = Tx and so
Tx ∈ Mn(x). Let T ≤ Mn. We just show that jnx(Tx) = Tx for
all x ∈ X . The result follow by the fact that Tx ∈ Mn(x).

(2) Let jn ⪯ jn ◦ jn. For x ∈ X if SMn = Tx for a sieve S on x, then
S ∈ Mn(x). Hence jnx(S) = Tx and so jnx(j

n
x)(S) = Tx. Thus

jnx(S) ∈ Mn(x) and the result follows.

Let M̂n ∧ T ≤ Mn. For x ∈ X and S ∈ Ω(x), if f ∈ jnx(S)
then S · f ∈ Mn(d0f) and so jnd0f (S · f) = Td0f . Thus by natu-
rallity of jn, jnx(S)·f ∈ Mn(d0f) and therefore f ∈ jnx(j

n
x)(S).

(3) The proof is similar to the part (2).
(4) Let jn ◦ ∧ ⪯ ∧ ◦ (jn × jn). If x ∈ X and S1, S2 ∈ Ω(x). S1 ⊆ S2,

S1 ∈ Mn(x) implies that jnx(S1 ∩ S2) = jnx(S1) = Tx. Hence
by assumption S2 ∈ Mn(x).

Let Mn be a filter. If x ∈ X and S1, S2 ∈ Ω(x), f ∈ jnx(S1 ∩
S2) implies that (S1∩S2) ·f ∈ Mn(d0f) and so (S1 ·f)∩(S2 ·f) ∈
Mn(d0f). Since Mn is a filter, S1 · f ∈ Mn(d0f). Similarly
S2 · f ∈ Mn(d0f). Therefore f ∈ jnx(S1) ∩ jnx(S2).

(5) The proof is similar to the part (4).
□

Corollary 2.5. If saturated M satisfies the principality property and
the induced map jn : Ω → Ω by Mn which Mn is a subobjects of Ω,
then:

(1) jn ◦ t = t iff M has enough retractions;
(2) jn ⪯ jn ◦ jn iff M has almost enough retractions;
(3) jn ◦ jn ⪯ jn iff M has the n-identity property;
(4) jn ◦ ∧ ⪯ ∧ ◦ (jn × jn) iff M has the n-maximal property;
(5) ∧ ◦ (jn × jn) ⪯ jn ◦ ∧ iff M has the n-quasi meet property.

Proof. Follows from theorems 1.11 and 2.4. □
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Corollary 2.6. Let M be a class of X -morphisms that satisfies the
principality property. The induced map jn : Ω → Ω is a Lawvere-Tierney
topology iff M satisfies (1), (3), (4) and (5) of Definition 1.5.

Definition 2.7. ([5]). An operation c : M −→ N between saturated
classes M and N that have X−pullbacks, is a collection (cx : M/x −→
N/x)x∈X of functions, that preserve the relation “∼”. Such an operation
is called:

(1) extensive, provided that for all x ∈ X and f ∈ M/x, f ≤ cx(f).
(2) monotone, provided that for all x ∈ X , cx preserves the preorder

“≤”.
(3) semi-universal, provided that for all f : y → x in X and m ∈

M/x, cy(f
−1(m)) ≤ f−1(cx(m)).

(4) universal, provided that for all f : y → x in X and m ∈ M/x,
cy(f

−1(m)) = f−1(cx(m)).

An universal operation is an universal operation that satisfies exten-
sive and monotone properties.

Let α : A ↣ X be a subobject of X in SetX
op
. First we classify α

by subobject classifier t and get α̂ : X → Ω. Next consider pullback of
t throughout j ◦ α̂ and get c(α) : c(A) → Ω. The following pullbacks
explain these construction:

A

p.b.

��

α
��

!A // 1��

t
��

X
α̂
// Ω

c(A)

p.b.

��
c(α)
��

!c(A) // 1��

t
��

X
j◦α̂

// Ω

By the above construction we have a universal closure operation cX :
Sub(X) → Sub(X) such that for each subobject α : A ↣ X of X,
c(α) : c(A) ↣ Ω is closure of α.

If we start by collection M of morphisms of category X which satis-
fies in principality property, then we can obtain subobject of Mn of Ω,
and next Lawvere-Tierney topology jn, then finally introduce universal
closure operation cn by topology jn.

Lemma 2.8. Let j1, j2 be two Lawvere-Tierney topologies such that j1 ⪯
j2. If α : A ↣ X is a subobject of X, then c1(α) ≤ c2(α).

Proof. We can see for two Lawvere-Tierney topologies j1 ⪯ j2, if α :
A ↣ X is a subobject of X, then j1 ◦ α̂ ⪯ j2 ◦ α̂. Set c1, c2 induced
closure operation by j1, j2, respectively. Hence c1(α) ≤ c2(α). □

Lemma 2.9. ([8]). Let “− ” be an universal operation.

(1) Let X ∈ SetX
op

and α, β ∈ Sub(X). Then α ≤ β if and only if

α̂ ⪯ β̂;
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(2) Let X ∈ SetX
op
. For all α, β ∈ Sub(X), (α ≤ β ⇒ ᾱ ≤ β̄) if

and only if for all α, β ∈ Sub(X), α ∧ β ≤ ᾱ ∧ β̄.

Theorem 2.10. Let the Lawvere-Tierney topology jn : Ω → Ω and the
universal operation cn correspond to each other. We have

(1) For all X in SetX
op

and α ∈ Sub(X), α ≤ cn(α) if and only if
jn ◦ t = t;

(2) For all X in SetX
op

and α ∈ Sub(X), α ≤ cn(cn(α)) if and only
if jn ⪯ jn ◦ jn;

(3) For all X in SetX
op

and α ∈ Sub(X), cn(cn(α)) ≤ α if and only
if jn ◦ jn ⪯ jn;

(4) For all X in SetX
op

and α, β ∈ Sub(X), cn(α∧β) ≤ cn(α)∧cn(β)
if and only if jn ◦ ∧ ⪯ ∧ ◦ (jn × jn);

(5) For all X in SetX
op

and α, β ∈ Sub(X), cn(α)∧cn(β) ≤ cn(α∧β)
if and only if ∧ ◦ (jn × jn) ⪯ jn ◦ ∧.

Proof. (1) Choose α = t, so t ≤ cn(t). Since jn ◦ cn(t) = t◦!cn(1) so
jn ◦ t = t ◦ 1 = t.

Suppose that jn ◦ t = t. For given subobject α : A → X of
X we have α̂ ◦ α = t◦!A, so jn ◦ α̂ ◦ α = jn ◦ t◦!A = t◦!A. Since
jn ◦ α̂ is the classifying map of cn(α), there exists an unique γ
such that cn(α) ◦ γ = α. Thus α ≤ cn(α).

(2) Choose α = t , so cn(t) ≤ cn(cn(t)). Since ĉn(t) = jn and
̂cn(cn(t)) = jn ◦ jn, the result follows.
Suppose that jn ⪯ jn◦jn. Let X be an object in SetX

op
and α

be in Sub(X). For each x in X and S ∈ Ω(x), α̂x(S) ∈ Ω(x) and
so jnx (α̂x(S)) ⊆ (jnx ◦ jnx )(α̂x(S)). Therefore jn ◦ α̂ ⪯ jn ◦ jn ◦ α̂.
Hence cn(α) ≤ cn(cn(α)).

(3) The proof is similar to the part (2).
(4) Suppose that for all X in SetX

op
and α, β be in Sub(X), cn(α∧

β) ≤ cn(α) ∧ cn(β). We know ⟨t, t⟩ = ⟨t◦!Ω, 1⟩ ∧ ⟨1, t◦!Ω⟩. Let
α = ⟨t◦!Ω, 1⟩ and β = ⟨1, t◦!Ω⟩. One can verify that α̂ = π1 and

β̂ = π2 are the projections, and α∧β = ⟨t, t⟩. Since ⟨α̂, β̂⟩ is the
identity, the result follows.

Suppose that jn ◦ ∧ ⪯ ∧ ◦ (jn × jn). Let X be an object in

SetX
op

and α, β ∈ Sub(X). We have jn ◦ ∧ ◦ ⟨α̂, β̂⟩ ⪯ ∧ ◦ (jn ◦
jn) ◦ ⟨α̂, β̂⟩. Therefore cn(α ∧ β) ≤ cn(α) ∧ cn(β).

(5) The proof is similar to the part (4).
□

Corollary 2.11. Let M be a class of morphisms of the category X such
that satisfies the principality property. The induced universal operation
cn is an universal closure operation if and only if M satisfies (1) and
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(4) of Definition 1.5. In addition, cn is idempotent if and only if M
satisfies condition (3) as well.

Proof. Follows from theorems 1.11, 2.4 and 2.10. □

Example 2.12. Let X be a category and M be a pullback stable subset
of all monomorphisms (epimorphisms) of X . The principality property
holds by pullback stability. If furthermore M has enough retractions
and is weakly closed under composition (i.e. closed under composition
up to relation ∼) which both hold for class of all monomorphisms (epi-
morphisms), then the n-identity property as well as the n-quasi-meet
property hold. Thus, under the above conditions, the induced functor
Mn, map jn, and universal operation cn satisfy (1), (2), (3), and (5) of
theorems 1.11, 2.4 and 2.10, respectively. As a special case let X be the
full subcategory of Top (category of topological spaces and continuous
functions) consisting of finite ordinal topological spaces and consider X
as all monomorphisms (epimorphisms).

Example 2.13. Let (X,≤) be a preordered set and X = C(X,≤) be
the category it induces (see [1]). We know in case x ≤ y, Hom(x, y)
has a unique morphism, which we denote by (x, y). It is not hard to see
that ⟨(a, x)⟩ · (b, x) = {(c, b) : c ≤ b and c ≤ a} and that ((b, x) ⇒
⟨(a, x)⟩) ̸= ∅ if and only if a meet a ∧ b exists, in which case (a ∧ b, b) ∈
((b, x) ⇒ ⟨(a, x)⟩) or equivalently ⟨(a, x)⟩ · (b, x) = ⟨(a ∧ b, b)⟩.

Let M be a class of morphisms of X . M satisfies the principality
property if and only if for each (a, x) ∈ M/x and (b, x) ∈ X1/x a meet
a ∧ b exists and (a ∧ b, b) ∈ M/b; M has enough retractions (almost
enough retractions) if and only if for each x, 1x ∈ M/x (1x ∈ M/x or
M/x ̸= ∅); M has the n-identity property if and only if for all x and
for all sieves S on x, if the set MS has at most n maximal elements in
M, then it contains 1x; M has the n-maximal property if and only if
for all x, every nonempty subset of (M/x,≤op) has at most n maximal
elements and also for all x and (a, x) ∈ X1/x, either there is (b, x) in
M/x such that b ∼= a or for all (b, x) ∈ M/x, b ≥ a; and finally M has
the n-quasi-meet property if and only if M has local binary meet (i.e.
for all objects x, M/x has binary meet).

In case (X,≤) is a partially ordered set, every maximum or meet that
exists is unique and if (X,≤) is a lattice then every binary meet exists
and is unique.

Let (X,≤) be any partially ordered set such that every nonempty
subset of X has a maximum (≤op is then indeed a total order and (X,≤op

) is well-ordered). Obviously every sieve on an object x ∈ X is principal.
Now suppose for all x, M/x ̸= ∅ and for a ≤ b ≤ x, (a, x) ∈ M if and
only if (a, b) ∈ M and (b, x) ∈ M. One can then verify that M satisfies
the principality as well as all the properties listed in Definition 1.5.
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So by theorems 1.11, 2.4, 2.10, the induced presheafM is a Grothendieck
topology; the induced j is a Lawvere-Tierney topology; and the induced
universal operation “− ” is an idempotent universal closure operation.
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