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ABSTRACT. Let A be a Banach algebra, Q(A) be the character
space of A and « € Q(A). In this paper, we examine the character-
istics of a-projective (injective) A-modules and demonstrate that
these character-based A-modules also satisfy well-known classical
homological properties on Banach A-modules.

Keywords: Banach Algebra, A- Module, Banach A-Module, Pro-
jective, Injective Modules.

2000 Mathematics subject classification: 46M10, 46H25.

1. INTRODUCTION

This paper has been devoted to the study of some homological prop-
erties of Banach algebras and Banach modules. Many mathematicians
work on the Lifting Problem (projectivity, injectivity and flatness) of
Banach modules and Banach algebras, to name but a few, we may men-
tion [W, B, @, §, [, B, [T, I3, 04, 05]. The underlying concepts of these
meanings were originally introduced by Helemskii, [3, @, 5]. Selivanov
[[d] characterized biprojective banach algebras. Subsequently, Seliv-
anov, Helemskii, Pirkovski 5, I7] and many other mathematicians have
provided research works with abound results on homological properties
of Banach algebras, C*-algeras, Banach modules and Frechet algebras,
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e.g., see [, B, @, &, [, 8, I, [3, 14, I5].
Kaniuth et al. [Y], for each character on a Banach algebra introduced
the concept of character amenability and character contractibility.

On the other hand, R. Nasr and S. Soltani Renani [T0] have developed
the concepts of character projective and injective Banach modules and
further demonstrated that these notions admit by character amenability
of Kaniuth et al [0] [0, for more details].

In this paper, we study some intrinsic homological properties of Ba-
nach modules and Banach algebras in character homological properties.

Let A be a Banach algebra. We denote by A, the Banach alge-

bra obtained by adjoining identity et to A. Closely akin to [d, [, 3],
the category of left Banach A-modules, right Banach A-modules and
A-bimodules will be denoted by A-mod mod-A and A-mod-A, respec-
tively.
For each M, N € A-mod (correspondingly mod-A and A-mod-A), the
space sH(M,N) (correspondingly H (M, N) and 4 Ha(M,N)) is de-
fined as the collection of all left A-module (correspondingly right A-
module and bi-A-module) morphisms from M to N. The morphism
T € g4H(M, N) is called an admissible epimorphism (monomorphism) if
T is epimorphism(monomorphism) and has a right ( left) inverse as a
morphism between two locally convex spaces M and N.

The A-module X is called projective (injective) if for every admissible

epimorphism (monomorphism) T° € s4H(M,N) and further each ¢ €
AH(X,N) (Ha(M, X)), there exists ¢ € asH(X, M) (Ha(N, X)) such
that T oy = ¢ (¢ oT = ¢). Note that for the right and two-sided
modules, projectivity and injectivity can be defined in a parallel manner
noting however that, with regard to a two-sided module, the module X
is called biprojective. Each Banach algebra A is biprojective as a Banach
A-bimodule if and only if the admissiblle epimorphism 74 : AQA — A
defined by m4(a®b) = a- b for each a,b € A, is a retraction (has a right
inverse in A-mod-A) [@, 01, 04].
Consequently, if A is biprojective and I is a closed bi-ideal of A such
that for some closed bi-ideal J of A, A = I & J, then J is biprojective
[@, 000, 2. In this paper, we further investigate this property as well as
some other properteis for charecter projectivity.

2. MAIN RESULT

Let A be a Banach algebra and let {2(A) be the character spase of
A. For each X € A-mod-A, as in [10], Z(«, X) denotes the span of
{a-z—aa)r:a € Az € X} in X. Immediately, Z(a, X) = 0 if and
only if module multiplication on X is of the form a - x for every a € A
and z € X.
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Definition 2.1. Let X be a banach A-module and o € Q(A). The
space X is called a-projective A-module whenever for each admissible
epimorphism 7' € sH(M, N), with Z(a, ker T') = 0 and each morphism
¢ € 4 H(X,N), there exists a morphism p € 4H(X,N) such that the
following diagram is commutative:

M

lT'\

N <T X

It is obvious that every projective A-module is an a-projective A-

module. Moreover, if X € A-mod is a-projective and Y € A-mod is
a retraction of X — i.e., there exists morphism 6 : X — Y which has
a right inverse — then Y is a-projective; indeed, if T' € s4H (M, N) such
that Z(a,kerT) = 0 and ¢ € A4H(X, N), ¢0 is a morhism from X to N.
therefore, there is 7 € AH (X, M) such that T o7 = ¢ 0. Now, if p is
an inverse for 0, we set ¥ = 6 o p, then

Toy=Torop=¢olop=4.

Definition 2.2. Let A be a Banach algera and a € Q2(A). The Banach
left A-module X is called a-injective if for each admissible monomor-
phism 7" € sH(M,N) with Z(co, N) € Im(T) and any morphism ¢ €
AH (M, X), there exists morphism ¢ € 4H (N, X) such that the follow-
ing diagram is commutative:

M—% X

2%

It is easy to observe that every retract of a-injective A-module is a-
injective [I0].
We recall that the categories A-mod, mod-A and A-mod-A admit
product and coproduct. Consider the familly of Banach A-modules
{X,;v € A}. The product and coproduct of this familly are denoted
by [[ X, and ] X, respectively. For a more detailed account on these
concepts, we refer the reader to [8, [d].

Theorem 2.3. Suppose that [[{X,;v € A} is the product of familly
of Banach left A-modules {X,},en and o € Q(A). Then, [[ X, is a-
injective if and only if each X, be a-injective.

Proof. First, we suppose that all X, s are a-injective. Let T' € s H (M, N)
be an admissible monomorphism with Z(a, N) C (7') and
¢ € AH(M,][[X,). If 6, be a projection from [[ X, to {X,}, then
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0, o ¢ is a morphism from M to {X,}, thereby there exist morphism
T € AH(N, X,) such that the diagram

M2 [1x, -2 x,
e
P

is commutative. On the other hand, from universal property of product,
thereis p € 4H(N, ][] X,) such that 6,0p = 7. Now we have 70T = 6,0¢
which means 6, 0o poT =0, 0¢, and so poT = ¢.

The converse is deduced from the fact that retract of a-injective A-
module is a-injective. U

Theorem 2.4. Suppose that {X,;v € A} is a familly of Banach A-
modules. The following statements are equivalent:

(1) All the objects of X,, are a-projective.

(ii) The coproduct of X,’s, [[ X,, is a-projective.

Proof. The proof is analogous to the proof of Theorem 2.3. (]

It is obvious that if « be a character of Banach algebra A, then a® «
is ancharacter of AQA.

Proposition 2.5. Let A be a Banach algebra and o € Q(A), and let I
be a closed two-sided ideal of A. If A is a®@«a-biprojetive Banach algebra,
then the Banach A-bimodule AJ/A -1 is a ® a-biprojective.

Proof. Suppose that T' € sH (M, N) is an admissible epimorphism with
I(a @ a,kerT) = 0. If ¢ € 4HA(A/A-I,N) and ¢ are canonical
projection from A to A/A -1, then ) o¢ € s4Ha(A,N) and thus a ® a-
biprojetivity of A follows from the fact that there exist A-bimodule
morphism pg from A to M such that T o pg = ¢ 0 ¢p. Now we have

pola-d) =¢o(a-d) =0,
for each a € A and d € I. Therefore, po(A - I) = 0 which means that
there exist a morphism p € s4HA(A/A - I, M) defined by the formula
p(4(0))(@) = pola),  ac A
Observe that for any a € A we have
Topla+AI)=Topo(a)
=T o po(a)
= ¢ o(a)
=¢la+A-1I),
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and it concludes that the Banach A-bimodule A/A-I is a®a-biprojective.
O

Corollary 2.6. Let A be a Banach algebra and o € Q(A), and let I
be a two-sided ideal of A such that A =1® J for some closed essential
closed two-sided ideal J of A. If A is a ® a-biprojetive Banach algebra,
then I is an A-bimodule o @ a-biprojetive.

Proof. 1t follows from the previous proposition and the fact that

I1=A)J=AJ/A-T.
O

Let A be a Banach algebra, Q(A) its character space and X € A-

mod. We show the canonical projection from A1 QX to X defined by
a®@x — a.x on elementary members by W;_( Further, we use this notion

for morphism A+®X®A+ — X and X®A+ — X when X is an
object in A-mod-A and mod-A, respectively.
Consider X €A-mod, a € Q(A) and the morphism

oTx: AL ®X/I(a kerml) — X
defined by the fomula

oYx(a®z+ZI(akermy)) =a-x,
for each a € A4 and x € X. If we denote the space A+®X/I(a, ker 7%;)
as in [T0] by , A+ X, then the morphism ,Y x is an element in
AH(0A+QRX, X) with Z(a, ker , Y x) = 0.

The following theorem is taken from [IT].

Theorem 2.7. Let A be a Banach algebra and let o € Q(A). For X €
A-mod, the following statements are equivalent.
(1) X is a-projective.
(id)  The left A-module morphism Y x € sH(4A+QX, X) is a
retraction; there exist morphism opx € AH(X, 0 AL+ QX) such that it is

a right inverse for T x.

It is clear that if M, N € A-mod-A and T' € s Ha(M,N), then T €
Ha(M,N) and T' € sH(M, N).

Theorem 2.8. Let A be a Banach algebra and let o € Q(A). Then
a ® a-projectivity of X € A-mod-A concludes that X is a-projective in
both A-mod and mod-A.

Proof. Suppose that 4gqp is a right inverse of the mapping oga Y y that
come out in Theorem 2.7 in A-mod-A category. Let 0§ : A, QX QAL —
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A.®X be the morphism defined by O(u ® b) = u - b for each u €
ALQ®X and b € A;. Now we show that 6(Z(a ® a,ker g»_amy)) C
Z(a,ker qmx). Let a,b,c € A and u € AL QX, we have

a-u-chb—afa)u-cad) = (a—a(a) u-cb+ (a(a)u-c)(b—ab)).

It is immediate that if u ® ¢ € ker o_ 47, then u.c € ker 47 as same
as u- cb. Therefore, §(Z(a ® a,ker g4—am" y)) € Z(a, ker 47" x) and by
the continuity of 6,

0(Z(a ® a,ker go—amt ) C Z(cv, ker o7t x).
Now consider A-bimodule morphism

AL QXRAL ; AL QX
" I(a®aker o—amT ) Z(a,ker o7t x)

produced by 6. We set 4p = © 0 4gqp- This is an A-module morphism
that is a right inverse for Y x. For the case mod-A, the proof is similar.
O

Theorem 2.9. Suppose that kK : A — B is a morphism of Banach
algebras with dense range. Let o € Q(B), and X € B-mod. If X,; be
an « o k-projective Banach A-module, then X is an a-projective Banach
B-module.

. AL RX N .
Proof. Let pg : X — Toordo o™ be a right inverse for 4o, Y x, in
A-mod.

Consider morphism
k®Idx 1 A QX — B, RX.
For any a,b € A and each x € X we have,
k®Idx (a.(b® ) — aok(a)(b® ) = K(ab) @ (a0 k(a)) (k(b) @ z)
= (Fc(a) — a(m(a))) (k(b) ® z).
Therefore,
k@Idx (I(ao k, AL@X)) C I(a, By ®X).

On the other hand, it is clear that if u € ker W}N then k®Idx(u) €

ker Tr;’(. This implies that

K@Idx (I(ao s, A, QX)) C I(ar, B RX),

and thus there exists A-module morphism
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AL®X BL®X
0 - +& , _B+®X
I(ao/-c,kerﬂ’}n) I(oz,kerfrj()

Next we set p = 0 o p4 and, in the two succeeding steps, we show that
this morphism is a B-module morphism inverse for .Y x.

(i) The morphism p is a B-module morphism; for this, let x € X
and b € B. Since Im(k) = B, there is a sequence (ai)i C A such that
lim k(a;) = b. Thus,

7

p(b.x) =60 pa(b-x)
=limf o pa(r(a;) - )
= 11?19(% - pa(z))
= limr(a;) -0 0 pa(@)
=b-p(z).

(7) The morphism p is a right inverse for ,Tx in B-mod. Let z € X

and let u = Z;; a; ® x;j for some a; € A and x; € X such that

pa(x) =u+Z(ao m,kerﬂ}ﬁ).

Then,
Oopa(z) =372 k(a;) ®z; +I(a,kermy)
and thus
aYxo0bops(r)= Z K(az).x;
j=1

— aon’rX,{ (u +I(a O K, ker 7T)+(,€))

= aonTXﬁ o pA(l')
=X.

O

Let A be a Banach algebra, M, N € A-mod-AandletT € sHA(M,N).
The space ker T is a left, right and two-side submodule of M. We de-
note the space Z(«, ker T') by aZ(a, ker T') and Z4(a, ker T') respectively,
when T' € gAH(M,N) and T € Ha(M,N).

Definition 2.10. Let A be a Banach algebra, a € Q(A) and X € A-
mod-A. We say that X is left a-biprojective when for each M, N € A-
mod-A if T € s4HA(M,N) is an admissible epimorphism with
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AZ(a,kerT) = 0 and ¢ € H(X,N), then there exists ¢» € sHa(X, M)
such that T o) = ¢.

Let A be a Banach algebra and X € A-mod-A. Suppose that

A— AW}W.A+Q§)(Q§A%,——%)(
is a canonical morphism. Then 4_ A7r : Ay is an admissible epimor-
phism that is a retraction in A-mod- A if and only if X be bipro-
jective, see proposition IV.1.1 in [@]. Now we consider the morphism

(Yx A QX4 x given by
AI(a,ker(A,Aﬂ';;))

gTX<a®x®b+AI(a,ker(A,A7r}))) =q-x-0, xz € X,a,be A.

Apparently, ;T x is a morphism in A-mod-A and AI(a, ker(ﬂ"x)) =0;
see [I0].

Proposition 2.11. If A is a Banach algebra, o € Q(A) and X € A-
mod-A. The following statements are equvalent:

(i) The Banach A-bimodule X is left a-biprojective.

A RXRA,

— X is a retraction
AI(a,ker(A_Aﬂ’j())

(7i) A-bimodule morphism ¢ x :

in A-mod-A.

Proof. (i) = (ii), The module morphism ,Y x is an admissible epimor-
phism with 7 (a, ker(,Y X)) = 0 and so there exist a right morphism for
(x.

(i) = (i), Let M, N € A-mod-A, T' € 4Ha(M,N) an admissible epi-
morphism with 4Z(a,kerT) = 0, and ¢ € 4Ha(X,N). We show that
there exists morphism R € AHA(X, M) such that T o R = ¢. For this,

the module A+®X ®A+ is a biprojective A-bimodule and thus there is

0caH A(A+®X ®A+, M) which, if we consider g as the quotient map-
pig, the up side and down side of the following diagram are commutative.

M
T
N X A RQXRA,L
] A—AW}
ZYXT k///71///
AL QXA

AI(a,ker(A,ij;))

Now © : —A+®X®A+ A1 which is defined by
AI(a,ker(A,AW;))
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@(u + Az(a,ker(A_An;))) — 0(v),

forall v € A+®X®A+, is well defined. If p, is a right inveise/f\or ¢Yx,
A+ RQXRAL

AI(a,ker(A,Aw;)) .
Next, it is sufficient to show that T o R = ¢. Let x € X and for some

ue A+®X®A+,

pa(x) = u+ aZ(a,ker(a—amy)).

then the morphism R = O o p, belongs to aH (X,

Therefore,

ToR(z) = T(@ (ﬂa(ﬂ))

2o+ )
=T(0(u))

= ¢oa amy(u)
=¢oYxoqu)
=¢o,Tx <u + AI(a, ker(A,ATr;)))
= ¢ o Tx opa(x)
= ¢(z),
as required. O

Theorem 2.12. Let A be a Banach algebra and o € Q(A). If X € A-
mod-A is left a-biprojective, then X is left a-projective.

Proof. Consider morphism 6 : A+®X ®A+ — A+®X such that for

each a,b € AL andz € X, l(a®2® B) = a®x-b. For each u =

F2a; @2, ®b; € ker o724 and a € A, we have

0(((1 — a(a)) ;;Of a; Q@ T; ® bi) = (a — oz(a)) jzolo a; @ x; - by,

since Z;;Of a; Q@x;-b; € ker W}, the right hand side of the above equation
belongs to Z (a, ker Tr}) Thus, there is morphism
o - AL QXRAL BN AL ®X
AI(a,ker(A_AW;E)) I(a,ker(wj())

such that for every v € A+®X®A+,

@(1/ + aZ(a, ker(A_Aﬂ'}))> =0(v) + I(a, ker y;).
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If p is a right inverse for ;Y x, which was concluded from the previous
theorem, we set ,p = ©op. Now, it is sufficient to show that , T x op, =

tdx. For this, let € X and for some u € A+®X®A+,

plx) = u+AI(a,ker(A_A7r+)) = :;Olo ai®xi®bi+AI(a, ker(A_Aﬂ}))
that a;,b; € Ay and z; € X. Therefore,

aYx 0pa(r) =aYx000p(x)

+00
= aTX o @(Zal X xT; X bl =+ AI(O&,kGI‘(AfAﬂ';E))>
o
=.Tx (G(Z a; @ x; @ by) +I(a,ker7r})>
=1

+oo

= Zai Ty bl'
=1

:x,

as required. O

3. QUESTIONS

Suppose that A is a Banach algebra and X € A-mod-A. Let LM(X)
and RM(X) be respectively the left and right multipliers of X; in other
words L € LM(X) = AH(A,X) and R € RM(X) = Ha(A4,X). We
recall that the continuous operator D : A — X is a derivation if D
satisfies the Leibnitz rule:

D(ab) =a-D(b) + D(a) - b,

for each a,b € A. In [I5] or Theorem 3.4 in [I1], Selivanov and Pirkovski

showed that A is a biprojective Banach algebra if and only if for each
derivation from A to X there exist R € RM(X) and L € LM(X) such
that D = R — L. Now, the question is

Question 3.1. Let a € Q(A). If the left module multiplication on X is
of the form
a-z=a(a)r, (ae Az e X)

then is it true that: X is left a-biprojective if and only if for each
derivation D from A to X, there exist R € RM(X) and L € LM(X)
such that D =R — L?
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