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Abstract. This paper deals with the Legendre wavelet (LW) col-
location method for the numerical solution of radial Schrödinger
equation for hydrogen atom. Energy eigenvalues for the hydrogen
bound system is derived −13.6 eV . Numerical results of the ground
state modes of wave function for the hydrogen atom R(r), or the
electron probability density function, has been presented. The nu-
merical results have been compared to the other existing method
and exact solution.
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1. Introduction

One of the most important eigenvalue equations in physics is the Schrödinger’s
wave equation. For atomic mass m in the potential energy V (r) is:

− ~2

2m
∇2ψ(r) + V (r) = Eψ(r), (1.1)
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in which ψ(r) is the particle wave function and E is an energy eigenvalue
[1]. For one-dimensional potential energy, equation (1.1) is as follow:

− ~2

2m

d2ψ(x)

dx2
+ V (x) = Eψ(x). (1.2)

The Schrödinger’s wave function, must be convergent as x → ∞, be-
cause:

+∞∫
−∞

ψ(x)ψ∗(x)dx = 1, (1.3)

which means that the particle must be somewhere in the x axes [1].
The first derivative of the wave function also must be continuous as if,
it’s second derivative which is appearing in the equation (1.2), could be
exist.

The numerical solution of the above equation is the subject of many
research papers in the last two decades [2, 3, 4, 5, 6]. This equation has
the analytical answers for few potential energies V (r). For many poten-
tial energies, in physics and chemistry, it cannot be solved analytically.
So, in quantum mechanics the numerical or approximate analytical so-
lution of the Schrödinger wave equation is real need. The aim of this
paper is to study and obtain the results of Legendre wavelet approach
for solving the Schrödinger’s wave equation (1.1). Comparison will be
made whit the other well known numerical solution methods and exact
solution.

2. Schrödinger equation for Hydrogen atom

In the Hydrogen atom, electron constraint to nucleus, in the Colom-
bian force. The radial Schrödinger equation for the central potential
V(r) is as follow:[

d2

dr2
+

2

r

d

dr

]
R(r) +

2µ

~2

[
E + V (r)− l(l + 1)~2

2µr2

]
R(r) = 0, (2.1)

where µ is the reduced mass of electron-proton system, l is the orbital
quantum number and R(r) is the radial wave function. The Coulomb
potential between electron and proton in the hydrogen atom is V(r) =
e2/4πε0r, thus:[

d2

dr2
+

2

r

d

dr

]
R(r) +

2µ

~2

[
E +

e2

4πε0r
− l(l + 1)~2

2µr2

]
R(r) = 0, (2.2)

where:

µ =
mpme

mp +me
. (2.3)
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For simplicity, we can rewrite Eq. (2.2) in dimensionless form as [1]:

d2R(ρ)

dρ2
+

2

ρ

dR(ρ)

dρ
− l(l + 1)

ρ2
R(ρ) + (

λ

ρ
− 1

4
)R(ρ) = 0, (2.4)

where:

ρ = 2

√
2µ

~2
√
|E| r, (2.5)

and

λ =
e2

4πε0

1

2

√
2µ

~2
1√
|E|

. (2.6)

We need to consider physical constant values and units. The amount of
Planck’s constant, in the SI unit is h = 6.63 × 10−34j.s , which is too
small to perform computation, therefore we use Angstrom for the length
and the energy is in term of the electron volt which is denoted as (eV):

~2 = 7.6199682me eV.A
◦2. (2.7)

In Eq. (2.7), me(= 0.51101 × 106eV
/
c2) is the rest mass of atomic’s

electron. Another constant which is appeared in the Shrödinger equation
for the Coulomb potential is:

e2

4πε0
= 14.39998 eV.Ao, (2.8)

so the approximate values of the dimensionless parameters (2.5) and
(2.6), could be written as:

ρ ≃ 2
√
2√

7.6199682

√
|E| r, (2.9)

λ ≃ 14.39998√
2× 7.6199682

1√
|E|

. (2.10)

From quantum mechanics it is known that r2|R(r)|2, represents the
probability density of finding the electron in place of r from the center
of the atom [1]. So in order to solve Eq. (2.4), we must consider the
following facts:
a. Initial conditions: at the center of the atom, which is nucleus, the
probability of electron presence must be zero, then we imposed the initial
conditions in the vicinity of center, r ≃ 10−4A◦, as follow [7]:

R(r)|r=10−4 = 10−6,
dR

dr

∣∣∣∣
r=10−4

= −1000. (2.11)

b. Energy eigenvalue E: From the statistics it is known that, the prob-
ability is finite, so the solution of Eq. (2.2), R(r), must not diverge to
infinity for any value of r > 0. For the ground state of the hydrogen,
which is l = 0 (S wave), trying various amounts of the energy E, one
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easily finds that, E must be −13.6 eV . The wave function R(r), for any
greater or smaller values of −13.6 eV , is divergent to −∞ or +∞ re-
spectively. For example, Fig 1 shows the behaviour of the wave function
R(r) for two sample value E = −13.0 eV and E = −14.0 eV .
c. Range of r: Outside the atom, the probability presence of the elec-
tron, and consequently the wave function, must be 0. So, we take the
0 < r ≤ 4A◦ for hydrogen atom. Notice that the first Bohr’s atomic
radius is about 0.5A◦.

3. Legendre Wavelet

Recently, wavelet basis have found their way into many different fields
of science and engineering. Particularly, wavelets are very successfully
used in signal analysis, time-frequency analysis and accurate representa-
tion of functions. Wavelets constitute a family of functions constructed
from dilation and translation of a single function ψ called the mother
wavelet. When the dilation parameter a and translation parameter b
vary continuously, we have the following family of continuous wavelets

ψa,b(t) = a−
1
2ψ

(
t− b

a

)
, a, b ∈ R, a ̸= 0. (3.1)

The Legendre wavelets are defined on the interval [0, 1) as

ψmn(t) =

{ √
m+ 1

22
k+1
2 pm

(
2k+1t− (2n+ 1)

)
n
2k

≤ t < n+1
2k
,

0 otherwise,
(3.2)

where n = 0, 1, ..., 2k − 1 and m = 0, 1, · · · ,M − 1 is the degree of the
Legendre polynomials for a fixed positive integerM . Here Pm(t) are the
well-known Legendre polynomials of degree m [9, 8].

Any square integrable function f(x) defined over [0, 1) can be ex-
panded in terms of the extended Legendre wavelets as

f(x) ≃
∞∑
n=0

∞∑
m=0

cnmψnm(x) = CTΨ(x), (3.3)

where cmn = (f(t), ψmn(t)) and (., .) denotes the inner product on
L2[0, 1]. If the infinite series in (3.3) is truncated, then it can be written
as

f(x) ≃
2k−1∑
n=0

M−1∑
m=0

cmnψmn(x) = CTΨ(x), (3.4)

where C and Ψ(x) are m̂ = 2kM column vectors given by

C =
[
c00, . . . , c0(M−1)|c10, . . . , c1(M−1)|, . . . , |c(2k−1)0, . . . , c(2k−1)(M−1)

]T
,

(3.5)
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Ψ(x) = [ψ00(x), . . . , ψ0(M−1)(x)|ψ10(x), . . . , ψ1(M−1)(x)|, . . . ,
|ψ(2k−1)0(x), . . . , ψ(2k−1)(M−1)(x)]

T . (3.6)

By changing indices in the vectors Ψ(x) and C the series (3.4) can be
rewritten as

f(x) ≃
m̂∑
i=1

ciψi(x) = CTΨ(x), (3.7)

where

C = [c1, c2, ..., cm̂]T , Ψ(x) = [ψ1(x), ψ2(x), ..., ψm̂(x)]T , (3.8)

and

ci = cnm, ψi(x) = ψnm(x), i = (n− 1)M +m+ 1. (3.9)

Theorem 3.1. [13] Let Ψ(x) be the Legendre wavelet vector defined in
(3.6). The derivative of the vector Ψ(x) can be expressed by

dΨ(x)

dx
= DΨ(x) (3.10)

where D is the 2k(M + 1) operational matrix of derivative defined as
follows

D =


F 0 · · · 0
0 F · · · 0
...

...
. . .

...
0 0 · · · F

 (3.11)

in which F is (M+1)×(M+1) matrix and its (r, s)th element is defined
as follow

Fr,s =

 2k+1
√

(2r − 1)(2s− 1), r = 2, ..., (M + 1), s = 1, ..., r − 1, (r + s)odd

0, otherwise.

4. Method of solution

Consider the the Schrödinger equation (2.4). First, we approximate
R(t) in terms of the LWs as follows

R(ρ) ≃ CTΨ(ρ) = ΨT (ρ)C, (4.1)

where C is the LWs coefficient vector. By using the approximate R(t) ≃
CTΨ(t) and operational matrix of derivative D, the residual function
for the Schrödinger equation (2.2) can be written as

Res(r) = CTD2Ψ(ρ) +
2

ρ
CTDΨ(ρ)− l(l + 1)

ρ2
CTΨ(ρ) + (

λ

ρ
− 1

4
)CTΨ(ρ),
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Hereafter, in order to approximate solution of the Schrödinger equation
(2.2) with initial conditions (2.11), as in the typical collocation method
[11], we generate 2k(M + 1)− 2 equations by applying

Res(ri) = 0, i = 1, 2..., 2k(M + 1)− 2. (4.2)

Moreover, by using the initial condition (2.11) we have two algebraic
equations as

CTΨ(10−4) = 10−6, (4.3)

CTDΨ(10−4) = −1000, (4.4)

Eqs. (4.2) together with (4.3) and (4.4) generate a system of 2k(M +1)
algebraic equations for 2k(M + 1) unknown elements of the unknown
vector C. This system can be solved for unknown coefficient vector C
and unknown functionR(r) can be obtained by substituting the obtained
vector C in Eq. (4.1).

With the above considerations, approximate analytical LW expansion
of wave function, R(r), with M = 20, k = 0 is obtained as follow:

R(r) ≃



0.0001000000000000000 r < 0

0.0004027790697680989r20 − 0.01672149121526701r19

+0.3222282172276126r18 − 3.825614370207146r17

+31.32110889156184r16 − 187.5518819507251r15

+850.1112364103842r14 − 2978.048798212946r13

+8161.299539338049r12 − 17600.16297554591r11

−39838.37945962377r9 + 29893.05791979935r10

+41312.92593261955r8 + 19705.76528547583r6

−32889.32452321992r7 + 2661.067074335042r4

−8638.426438862927r5 − 542.7959231374756r3

+66.69939813083678r2 − 4.053099656590226r
+0.001710602629839316

0 < r ≤ 4

0.0001000000000000000 4 < r

Numerical results for the solution of the radial Schrödinger Eq. (2.2)
in the case of l = 0, is shown in Table 1, for various methods. As
the numerical results confirm, the LW collocation method is in a good
agreement with the exact analytical calculation.

5. Conclusion

In this paper a Legendre wavelet (LW) approach is used to find an
approximate analytic expansion for the radial Schrödinger equation for
hydrogen atom. Numerical results obtained from LW expansion, are
compared to the exact and other well known numerical methods. Runge
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Figure 1. Solutions of the Schrödinger equation in the
ground state l = 0, for three different values of E. As it
is shown, R(r) is convergent to 0 in the energy eigenvalue
E = −13.6 eV , and is divergent to −∞ or +∞ in E =
−14 eV or E = −13 eV , respectively.

Table 1. Comparison of the numerical solution for the radial
Schrödinger equation in the ground state of the hydrogen atom
R(r) for 0 < r < 4A◦.

r Exact RKF45 RK4 HUEN LW
solution h = 10−4 h = 10−4 expansion

0.1 -0.08282 -0.08282 -0.08283 -0.08291 -0.08289
0.5 -0.03896 -0.03896 -0.03897 -0.0391 -0.0354
0.9 -0.01831 -0.01831 -0.01832 -0.01841 -0.01686
1.3 -0.00861 -0.00861 -0.00862 -0.00868 -0.00852
1.7 -0.00405 -0.00405 -0.00406 -0.00412 -0.00388
2.1 -0.00192 -0.00192 -0.00192 -0.00199 -0.00148
2.5 -0.00092 -0.00092 -0.00093 -0.00101 -0.00099
2.9 -0.00046 -0.00046 -0.00047 -0.0006 -0.00057
3.3 -0.00026 -0.00026 -0.00028 -0.00048 -0.0001
3.7 -0.0002 -0.0002 -0.00023 -0.00055 -0.00016

Kutta Fehlberg method, Forth order Runge Kutta method with step
size 10−4 and modified Euler method (Heun’s method), with step size



42 M. Sadeghi , F. Mohammadi and N. Aalipour

10−4, also are used in numerical solution of the radial Schrödinger equa-
tion. The numeical results show a good agreement with the exact and
other numerical results for the presented LW method. It is worth noting
that the presented LW method results a semi-analytical expanssion for
solution of the the radial Schrödinger equation, while the other methods
result discrete numerical solution. Since, approximate semi-analytical
solution of wave function is useful in estimating physical quantities for
some complex quantum systems, the LW method is more efficient and
applicable in compare to other mentioned methods.
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