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ABSTRACT. In this paper we will present a new method to calcu-
late determinants of square matrices. The method is based on the
Chio-Dodgson’s condensation formula and our approach automat-
ically affects in reducing the order of determinants by two. Also,
using the Chio’s condensation method we present an inductive proof
of Dodgson’s determinantal identity.
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1. INTRODUCTION AND MOTIVATION

Determinants are frequently appeared in many areas of mathematics,
science and engineering. For matrices of small sizes, the calculation of
their determinants is an easy task based on Laplace expansion by rows
or columns and the difficulties only arise when someone needs to work
with matrices of very large sizes. There are only a few interesting un-
traditional methods of computing the determinant of a square matrix
in the old literature. Fortunately, these methods are based on what is
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called the condensation method; that is, reducing the order of the orig-
inal determinant.

The two most famous of these classic methods are called Chio and Dodg-
son’s condensation. In this paper while reviewing the above-mentioned
condensation methods, we will present a new method for calculating the
determinant of a square matrix by successively reducing it’s order based
on Chio and Dodgson’s determinantal identities to ultimately obtain a
determinant of order two which can be easily computed.

2. CHIO’S CONDENSATION METHOD

One of the interesting determinantal formulas for computing the de-
terminant of a square matrix is the so-called Chio’s Condensation Method
which was originally due to Chiol[1].

Lemma 2.1 (Chio’s Condensation Method). Let A = (a; ;) be annxn
matriz, where without loss of generality we will assume that a, 4 # 0. If
B is an (n — 1) x (n — 1) matriz constructed from A by defining

Gij  Qig

if 1<i<p—1, 1<j<qg-—1,

Qi q Qij : ] j

A if 1<i<p-1, ¢g+1<j<n,

bij =
Ay 7 a
P.J it p+1<i<n, 1<j<qg-1,
Aij  Qigq
a ap j
P if ptli<i<n, ¢+l<j<n,
a’L,q alv]
then
det(A) = — det(B).
Qp,q

Proof. Dividing the p-th row of A by a,, yields a matrix X for which
we have =, , = 1. Now subtract suitable multiples of the g-th column of
X from other columns of this matrix in order to make the elements of
the g-th column equal to zero except x,, which is equal to unity, and
thereby obtain the matrix Y. The Laplace expansion of Y via the g-th
column leads to B. O

In Lemma 2.1, a4 is often called a pivot. Other proofs of the above
lemma can be found in [2, 3]. In order to apply the Chio’s condensation
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method to a given square matrix, we start with the original n x n matrix
and compute the (n — 1) x (n — 1) matrix, then the (n —2) x (n — 2)
matrix, and so on, until we arrive at a 1 X 1 matrix whose only entry is
the determinant of the original n x n matrix. Clearly, at each stage a

nonzero entry of the matrix should be used as a pivot.

Corollary 2.2. Forp=1 and ¢ =1, if a11 # 0, then we have

ai1| a1
az2,1 az2
an,1 an 2
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Therefore, we have

a1 a2 a13 a1 a1 a14
a1 G22 G23 a1 G22 24
1 az1 az2 a33 az1 a32 a34
det(A) =
Z;i Z;z a1 a1 a1 a1 a1 aia
’ ’ a1 a2 a23 a1 a2 a4
(41 Q42 (43 (41 Q42 (44

Now we generalize the above formula for a matrix whose entries are
the determinants of some 3 x 3 submatrices of A. For each matrix A, the
notation ‘Ag_f 1’322’ stands for the determinant of the matrix obtained

from A by choosing the i-th rows (i = i1,42) and j-th columns (j =
j1,72). Other notations like |A7=/123

imindns | are defined in a similar way.

Theorem 2.4. Let A be an n X n and ‘AJ—1 S ‘7& 0, then we have

1,2,3 1,24 1,2,
Ayl [Acysl o My
,n
det(A) = 1 |A§71,2,4 |A571 240 |A571,2,4
= =12
|A§:1’2 12,3 .124 - j :12
AL 2l Al Sl 1A
Theorem 2.5. If A is ann x n and ‘Af_llz ' k‘;«é 0, then we have
G=1,2, k,k+1 §=1,2, k—1,k+1 j=1,2,
|Az:112217€kJ1r1 ’Az—112 IZlerl ‘ ‘Az—112
- I 7”.’ - 1n .“1 - 7n
det(A) = 1 |Ag:1,2,-~. k1 ‘A3_1 2o k1 e ‘Ai_1 2.
k . .
‘A2712 k‘ P -k ) .
J=1L4,,k—=1,n ] k= Ln .7
|Ai:1,2,-~~,k,k+1 |A 12 ok k1 ’A 12

Proof. The proof can be easily obtained using mathematical induction
on k and Chio’s Condensation Method. O

3. DoDGSON’S CONDENSATION METHOD

The Dodgsons condensation method was introduced in a paper by
Charels Ludwidge Dodgson in 1866 [4]. The method is based on a re-
cursive algorithm that computes any determinant of order n by reducing
it to calculation of determinants of smaller size n — 1. By iterating this
process, one can finally come up with a determinant of order 2, which
can be easily computed.

The following theorem can be proved by using Lemma 2.1.

Jk—1,n
k41

k—1n

k,k—l—l

k—1n

k,k+1
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Theorem 3.1. If the determinant of the matriz (a;;)izn—1.n s null,
#n—1,n
then the following identity holds: ’

det | (015) gy |t (asg) | et | (0as) g | | (0is) e ]

j#n—1 Jj#n Jj#n j#n—1
(3.1

Proof. Assuming det [(a”) i#n—1 n:| = 0, we prove identity (3.1) by in-

j#n—1,n
duction. For n = 3, the proof of (3.1) is trivial. For n > 4, we suppose
that (3.1) holds for (n—1) and prove it for n. Without loss of generality,
let us assume that a1,1 # 0. Then it is concluded from Theorem 2.1 that

1<4,5<n—2 Jj#n—1,n

et [(@)issn] = Bde] 62

— . det
al 1 1<4,j<n—3 j#n—1,n

ai,1 aij+1
Qi4+1,1 Q41,541
equation (3) yields

Since det [(a”)z#n 14 = 0, the

where b; ; =
j#En—1,n

det |:(bi7j)i;£n1,n:| =0.

1<4,5<n—3 j#n—1,n

I\IOW7 by applying (31) to the (TL — 1) X (n - 1) matrix (bi,j)lgi,jgn—la
we arrive at the following formula:

det . det - det bii)istn—2|. det bi i) istn— =0.
N () ey RO (CTRPPT ey R 0 (COPEVerY R (CMPEvesy

Simplifying the above formula by using Lemma 2.1 leads to (3.1),
which completes the proof. O

Now, we are ready to present our proof for Dodgson’s condensation
theorem which employs Lemma 2.1, and Theorem 3.1. An alternative
combinatorial proof for this theorem can be found in [5].

Let A = (aij)(i<ij<n) be an n x n square matrix and for each 1 <
i1,71 < n denote by Al 7?11 the matrix that is resulted from A by delet-

ing the ¢1-th row and the ji-th column. Similarly, for 1 < iy,149, j1,j2 < n

denote by Azzjlfz the matrix that is resulted from A by deleting the

i1-th and io-th rows and the j;-th and j2-th columns.
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Theorem 3.2 (Dodgson’s Condensation Theorem). For any square ma-
tric A = (a; ;) 1<i<n , we have
1<5<

j<n
det [(am)i#k] det |:(ai,j) i£k ]
o faay
det {(ai,j) E;EZ} - det {(ai,j)i#,k,/} = det ,

JRL
det [(ai,j)#k’] det {(ai,j) i#k'}
J#1 JAU

for all kK, 1,1 € {1,2,--- ;n} with k #k and 1 #1'.
Proof. To prove (3.3), it is sufficient to prove the following identity:

det {(ai,j)m,l] det {(ai,j)m,l}

j#n—1 j#n

det {(ai’j)j;iil] det |:(azyj);§zj|

(3.4)
since by pair replacing the row k with the row (n — 1) and the row &’
with the row n, the column [ with the column (n — 1) and the column

I with the column n, the determinant of the matrix (a;;)1<i<» is not
1<55<n

changed. In the following, we prove (3.4) in two cases, separately.

Case 1: det |(aj)i#n-1,» | = 0. In this case the proof of (3.4) is the
i

#n—1,n

same as the proof of Theorem 3.1.

Case 2: det [(ai,j) ;¢n_1,n] # 0. We prove (3.4) by induction. For n = 3
J

#n—1,n
the proof of (3.4) is trivial. For n > 4, we suppose that (3.4) is correct
for (n — 1) and prove it for n. By Lemma 2.1, we have

n—1:| 9 (35)
<j<n n—1

(a171)"*2 det {(a@j) 1<z‘_<n:| = det |:(bi7j) 1<i
1<j 1<j

IAIA

a1 a1,j+1

where b; ; =
I it1,1  Git1j41

1<j<n—2

Multiplying two sides of (3.5) by (al,l)’“4 det {(aw) 1<¢<n_2}, we get

{(alyl)n73}2 det [(am) 1§i§n:| .det [(am’) 1§i§n2:| = (3.6)
1<jsn Sjsn

1<j<n—2

(611’1)7174 det [(CLZ’J‘) 1<z‘_<n—2:| .det |:(bi7j) 1<z‘_<n—1:| .
1<j<n—

1<4,5<n 2 1<j<n—1

From (3.5), we obtain

(al,l)n_zldet (ai,j)1§g§n72 = det (bi,j)lgggnfza . (3.7)
1<j 1<j<n

<n—2



22 M. Bayat, H. Teimoori

Combining (3.6) and (3.7) results in

{(al,l)"_3}2 det [(ai,j) 1§i§nj| .det [(aiyj) 1§i§n2:|
125<n 1252n

—2

= det |:(bi7j) ig;éz—s] .det |:(bz‘,j) }Ei_gn—1:| .

-3 j<n—1

Since det [(ai’j) #n_l,n] = det [(ai,j) 1<z’<n—2:|, we get

j#En—1,n 1<j<n-—2

{(al’l)n—?)}gdet [(az’])iZzzn} .det [(ai7j);;ﬁn1,n]
SJsn j#En—1,n

= det [(bi,j) 1<i<n3:| .det [(bl}j) 1<i<n1:| . (3.8)
1<j<n-3

1<j<n—1

Applying (3.4) to the (n — 1) x (n — 1) matrix (b; ;) i<i<n—1 concludes

1<j<n—1
that

1<i,j<n—1 i#n—2 | 1<ij<n—1 ign—1

ot |(0u) s | et [0i) et ]

— det [(bi,j)#m}. det [(bi,,-)#nl].

1<i,j<n—1 ign-1| 1<ij<n—1 izn—2

Substituting (3.9) in (3.8), we get:

(a2 det (a2, | et (02) ey | = (3.10)

j#n—1,n

det  [(biy)]. _ det |:(bi,j)i¢n2]

1<i,j<n—2 1<i,j<n—1 ign—2

- edee 0]t 00 |

1<i,y<n—1 j#n—1] 1<i,j<n—1 J#n—2
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According to Lemma 2.1, we have

(a1,1)"~° det (au)z#n] = det1<i<p—1 [(bz‘,j);ggn—
sJsn—

Jj#n

((1171)"_3 det CLZJ i#En— 1:| detlgign_l (bihj)i.;én—Q R
Jj#En—1 L g#n72_
i (3.11)
(a171)n_3 det a” i#n :| detlgign—l (b )17&71 1,
j#n—1 L J#n—2 |
(CLLl)n_S det CLZJ itn— 1:| detlgign_l (bihj)i.#n—Q .
\ Jj#n L Jj#n—1 |
Now substituting (3.11) in (3.10), we find
{(a171)n73}2 det |:(al j) 1<7,<7L:| N det |:(CL1 ]) i#En—1 n:| =
<j< j#En—1,n
{(a11)")2. (det [(ai,j)#n] .det [(a”)#n 1}
j#n Jj#n—1
—det [(ai’j)i#nl] .det [(ai,j) Li#n ] )
Jj#n j#n—1
This completes the proof. O

Using the Dodgsons condensation method for the determinants of the
third order, we obtain:

Example 3.3.

1035 0 3

015 1 15

1035 1 0400 40

01510 . 2 3 1 2 31
det(A)=| 0 4 0 0 2=

2312 0 015 1 15

10011 400 0400/ |40

31 2 2 3 1 2 3 1

100 1 0 0

1 | 140 170 1 —8280

- __36'_4 _64‘ —55 (8960 + 680) = —— = 230,
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