El ouadih, S., Daher, R. (2017). Growth Properties of the Cherednik-Opdam Transform in the Space Lp. Caspian Journal of Mathematical Sciences (CJMS), (), -. doi: 10.22080/cjms.2017.1666

Salah El ouadih; Radouan Daher. "Growth Properties of the Cherednik-Opdam Transform in the Space Lp". Caspian Journal of Mathematical Sciences (CJMS), , , 2017, -. doi: 10.22080/cjms.2017.1666

El ouadih, S., Daher, R. (2017). 'Growth Properties of the Cherednik-Opdam Transform in the Space Lp', Caspian Journal of Mathematical Sciences (CJMS), (), pp. -. doi: 10.22080/cjms.2017.1666

El ouadih, S., Daher, R. Growth Properties of the Cherednik-Opdam Transform in the Space Lp. Caspian Journal of Mathematical Sciences (CJMS), 2017; (): -. doi: 10.22080/cjms.2017.1666

Growth Properties of the Cherednik-Opdam Transform in the Space Lp

Articles in Press, Accepted Manuscript , Available Online from 30 November 2017

In this paper, using a generalized translation operator, we obtain a generalization of Younis Theorem 5.2 in [3] for the Cherednik-Opdam transform for functions satisfying the $(\delta,\gamma,p)$-Cherednik-Opdam Lipschitz condition in the space $L^{p}_{\alpha,\beta}(\mathbb{R})$.

[1] E. M. Opdam, Harmonic analysis for certain representations of graded Hecke algebras,Acta Math. 175(2)(1995), 75121. [2] J. P. Anker, F. Ayadi, and M. Si, Opdams hypergeometric functions: product formula and convolution structure in dimension 1, Adv. Pure Appl. Math. 3(1) (2012), 1144. [3] M. S. Younis , Fourier Transforms of Dini-Lipschitz Functions. Int. J. Math. Math. Sci. 9 (2),(1986), 301312. doi:10.1155/S0161171286000376. [4] S. S. Platonov, Approximation of functions in L2-metric on noncompact rank 1 symmetric space . Algebra Analiz .11(1) (1999), 244-270. [5] T. R. Johansen, Remarks on the inverse Cherednik-Opdam transform on the real line, arXiv:1502.01293v1 (2015). [6] M. L. Mittal and V. N. Mishra, Approximation of signals (functions) belonging to the Weighted W(Lp; (t)), (p 1)-Class by almost matrix summability method of its Fourier series, Int. J. of Math. Sci. and Engg. Appls. 2 (2008), No. IV, 1- 9. [7] V. N. Mishra, K. Khatri, and L. N. Mishra, Product (N; pn)(E; q) summability of a sequence of Fourier coecients, Mathematical Sciences (Springer open access) 6:38 (2012), DOI: 10.1186/2251 7456-6-38. [8] V. N. Mishra, K. Khatri, and L. N. Mishra, Using linear operators to approximate signals of Lip(; p), (p 1)-class, Filomat 27:2 (2013), 355-365. [9] V. N. Mishra, K. Khatri, and L. N. Mishra, Product summability transform of conjugate series of Fourier series, International Journal of Mathematics and Mathematical Sciences Article ID 298923 (2012), 13 pages, DOI: 10.1155/2012/298923. [10] V. N. Mishra, K. Khatri, and L. N. Mishra, Approximation of functions belonging to Lip((t); r) class by (N; pn)(C; 1) summability of conjugate series of Fourier series, Journal of Inequalities and Applications (2012), doi:10.1186/1029-242X-2012-296. [11] L. N. Mishra, V. N. Mishra, K. Khatri, and Deepmala, On the trigonometric approximation of signals belonging to beneralized weighted lipschitz Lip((t); r), r 1, class by matrix (C1;Np) operator of conjugate series of its Fourier series, Applied Mathematics and Computation, 237 (2014) 252263. DOI: 10.1016/j.amc.2014.03.085. [12] V. N. Mishra and L. N. Mishra, Trigonometric approximation in Lp, (p 1)-spaces. Int. J. Contemp. Math. Sci. 7, 909-918 (2012).