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Abstract. The paper is an attempt to represent a study of limit
points, boundary points, exterior points, border, interior points and
closure points in the common generalized topological space. This
paper takes a look at the possibilities of an extended topological
space and it also considers the new characterizations of dense set.
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1. Introduction

There has been a significant body of literature that has dealt with the
study of generalization of the topological space and the open sets. In this
paper, however, we have attempted to accumulate them in a frame. We
have considered a type of sets in the topological space which are empty
or contain a nonempty open set. These types of sets may be referred
to as λ-open. This is also a generalization of open sets, implying that
each open set in a topological space is a λ-open set. It also follows
that its converse may not be true in general. This paper suggests that
this is an extension of the topological space. Some examples of such
λ-open sets are semi-open set [3], α-set [7]. On the other hand, ψ −
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C set [6], ψ-set [2], preopen set [4], semi-preopen set [1], ψ∗-sets [5]
cannot be categorized as such sets. The complement of a λ-open is
called λ-closed, and for a topological space, each closed set is a λ-closed
set. Therefore we arrive at two optimal cases, one being the discrete
topological space and another being the indiscrete topological space.
In these two topological spaces we do not have an extension due to λ-
open sets. Now if we accumulate the λ-open sets of finite complement
topological space and countable complement topological space, then we
arrive again to the finite complement topological space and countable
complement topological space respectively. In fact the reader will be
interested to λ(R) ̸= R∪Rl∪Ru, where R, Rl and Ru denote the standard
topology on real line lower-limit topology on real line and upper-limit
topology on real line respectively and λ(R) denotes the set of all λ-open
sets in R. If A is a subset of a topological space X, then we define
Intλ(A) by the union of all λ-open sets contained in A and Clλ(A)
is defined by the intersection of all λ-closed sets containing A. These
operators ‘Intλ’ and ‘Clλ’ satisfy the following results:

Proposition 1.1. For subsets A, B of a topological space X, the fol-
lowing statements are true:

(1) Intλ(A) ⊂ A.
(2) Int(A) ⊂ Intλ(A), where Int(A) denotes the interior of A in X.
(3) if A ⊂ B, then Intλ(A) ⊂ Intλ(B).
(4) Intλ(Intλ(A)) ⊂ Intλ(A).
(5) Intλ(A ∪B) = Intλ(A) ∪ Intλ(B).
(6) A is λ-open if and only if Intλ(A) = A.
(7) A ⊂ Clλ(A).
(8) Intλ(A) ⊂ A ⊂ Clλ(A).
(9) Clλ(A) ⊂ Cl(A).
(10) if A ⊂ B, then Clλ(A) ⊂ Clλ(B).
(11) Clλ(A) ∪ Clλ(B) ⊂ Clλ(A ∪B).
(12) if A is closed, then Clλ(A) = A.
(13) if x ∈ Clλ(A), then Ux ∩ A ̸= ∅ for all Ux ∈ λ(x), set of all

λ-open sets containing x in X.
(14) Intλ(A) = X \ Clλ(X \A).

2. λ-closure and λ-interior

Definition 2.1. Let A be a subset of a topological space X. A point
x ∈ X is said to be λ-limit point of A if each λ-open set U containing
x, U ∩ (A \ {x}) ̸= ∅. The set of all λ-limit points of A is called the
λ-derived set of A and is denoted by Dλ(A).
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Theorem 2.2. For subsets A, B of a topological space X, the following
statements hold:

(1) Dλ(A) ⊂ D(A) (D(A) denoted as the set of all limit points of A
in X).

(2) If A ⊂ B, then Dλ(A) ⊂ Dλ(B).
(3) Dλ(A)∪Dλ(B) = Dλ(A∪B) and Dλ(A∩B) ⊂ Dλ(A)∩Dλ(B).
(4) Dλ(Dλ(A)) \A ⊂ Dλ(A).
(5) Dλ(A ∪Dλ(A)) ⊂ A ∪Dλ(A).

Proof. (1) It is obvious from the fact that O(X) (set of all open sets in
X) ⊂ λ(X)(set of all λ-open sets in X).

(2) Obvious and hence omitted.
(3) From (2), we have Dλ(A) ∪ Dλ(B) ⊂ Dλ(A ∪ B). For reverse

inclusion, suppose x ∈ Dλ(A∪B). Then each λ - open set U containing
x, U ∩ (A \ {x}) ̸= ∅ and U ∩ (B \ {x}) ̸= ∅. Thus U ∩ (A∪B \ {x}) ̸= ∅.
Therefore x ∈ Dλ(A ∪B). Hence the result.

Second part: It is obvious from (2).
(4) If x ∈ Dλ(Dλ(A)) \ A and U is λ - open set containing x, then

U∩(Dλ(A)\{x}) ̸= ∅. Let y ∈ U∩(Dλ(A)\{x}). Then since y ∈ Dλ(A)
and y ∈ U, U ∩ (A \ {y}) ̸= ∅. Let z ∈ U ∩ (A \ {y}). Then z ̸= x for
z ∈ A and x /∈ A. Hence U ∩ (A \ {x}) ̸= ∅. Therefore x ∈ Dλ(A).

(5) Let x ∈ Dλ(A ∪ Dλ(A)). If x ∈ A, the result is obvious. So let
x ∈ Dλ(A∪Dλ(A)) \A, then for λ - open set U containing x, U ∩ (A∪
Dλ(A)\{x}) ̸= ∅. Thus U∩(A\{x}) ̸= ∅ or U∩(Dλ(A)\{x}) ̸= ∅. Now
it follows similarly from (4) that U ∩ (A \ {x}) ̸= ∅. Hence x ∈ Dλ(A).
Therefore, in any case Dλ(A ∪Dλ(A)) ⊂ A ∪Dλ(A). �

The reverse inclusion of 1 of the above Theorem need not hold in
general:

Example 2.3. Let (R,R) be the standard topological space, where R
denoted set of reals. Suppose A = { 1

n : n ∈ Z+} ⊂ R. Then 0 ∈ D(A).
Now for any ϵ > 0, (−ϵ, 0] is λ - open set as (−ϵ, 0) ⊂ (−ϵ, 0]. Then
(A \ {0}) ∩ (−ϵ, 0] = ∅, then 0 /∈ Dλ(A).

Theorem 2.4. For a subset A of a topological space X:

(1) Clλ(A) ⊂ Dλ(A) ∪A ⊂ Cl(A).
(2) Dλ(A) ⊂ A, if A is closed.
(3) If A is closed and λ-closed, then Clλ(A) = A∪Dλ(A) = Cl(A) =

A ∪D(A) = A.

Definition 2.5. Let X be a topological space, then bλ(A) = A\Intλ(A)
is said to be that λ-border of A.

Theorem 2.6. For a subset A of a topological space X, the following
statements hold:
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(1) bλ(A) ⊂ b(A) where b(A) denote the border of A.
(2) A = Intλ(A) ∪ bλ(A).
(3) Intλ(A) ∩ bλ(A) = ∅.
(4) A is a λ-open set if and only if bλ(A) = ∅.
(5) Intλ(bλ(A)) = ∅.
(6) bλ(bλ(A)) = bλ(A).
(7) bλ(A) = A ∩ Clλ(X \A).

Proof. (1) It is obvious from the fact that Int(A) ⊂ Intλ(A).
(2) It is obvious from the fact that bλ(A) = A \ Intλ(A).
(3) It is obvious from the fact bλ(A) = A \ Intλ(A).
(4) Suppose A is λ-open. Then A = Intλ(A), so bλ(A) = ∅. Con-

versely suppose that bλ(A) = ∅, then A ⊂ Intλ(A). Thus A is λ-open.
(5) If possible suppose that Intλ(bλ(A)) ̸= ∅. Let x ∈ Intλ(bλ(A)),

then x ∈ bλ(A). Since bλ(A) ⊂ A, then x ∈ Intλ(A) (since x ∈
Intλ(bλ(A)) ⊂ Intλ(A)). Thus we have, x ∈ Intλ(A) ∩ bλ(A) which
contradicts (3). Thus Intλ(bλ(A)) = ∅.

(6) bλ(bλ(A)) = bλ(A)\ Intλ(bλ(A)) = bλ(A) (since Intλ(bλ(A)) = ∅).
(7) bλ(A) = A \ Intλ(A) = A ∩ (X \ Intλ(A)) = A ∩ Clλ(X \A). �
Reverse inclusion of (1) of the above Theorem need not hold in gen-

eral:
Let (R,R) be the standard topological space. Then for any ϵ > 0,

Intλ([−ϵ, ϵ]) ⊃ Int([−ϵ, ϵ]). Thus ϵ ∈ Intλ([−ϵ, ϵ]) but ϵ /∈ Int([−ϵ, ϵ]).
Definition 2.7. Let A be a subset of a topological space X, bdλ(A) =
Clλ(A) ∩ Clλ(X −A) is said to λ-boundary of A.

Theorem 2.8. Let A be a subset of a topological space X, the following
statements hold:

(1) bdλ(A) ⊂ bd(A) (bd(A) is denoted as the set of all boundary
points of A in X).

(2) Clλ(A) = Intλ(A) ∪ bdλ(A).
(3) bλ(A) ⊂ bdλ(A).
(4) bdλ(A) = bdλ(X \A).
(5) X \ bdλ(A) = Intλ(A) ∪ Intλ(X \A).
(6) bdλ(A) = Clλ(A) \ Intλ(A) = Clλ(X \A) \ Intλ(X \A).
(7) bdλ(A) is the set of all x ∈ X such that x /∈ Intλ(A) and x /∈

Intλ(X \A).
(8) A ∪ bdλ(A) ⊂ Clλ(A) ⊂ Cl(A).
(9) Intλ(A) ⊂ A \ bdλ(A) ⊂ Clλ(A).
(10) A is λ-closed when bdλ(A) ⊂ A.
(11) A is λ-open if and only if A ∩ bdλ(A) = ∅.

Proof. (1) Let x ∈ bdλ(A). Then x ∈ Clλ(A) ∩ Clλ(X \ A) ⊂ Cl(A) ∩
Cl(X \A) = bd(A). This implies that bdλ(A) ⊂ bd(A).
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(2) bdλ(A)∪Intλ(A) = (Clλ(A)∩Clλ(X\A))∪(Intλ(A)) = (Clλ(A)∩
(X \ Intλ(A)) ∪ (Intλ(A)) = Clλ(A).

(3) We know A \ Intλ(A) ⊂ X \ Intλ(A) and A \ Intλ(A) ⊂ Clλ(A).
Thus A \ Intλ(A) ⊂ Clλ(A) ∩ (X \ Intλ(A)) = Clλ(A) ∩ Clλ(X \ A) =
bdλ(A). Therefore bλ(A) ⊂ bdλ(A).

(4) Given that bdλ(A) = Clλ(A)∩Clλ(X \A) = Clλ(X \A)∩Clλ(X \
(X \A)) = bdλ(X \A). Thus bdλ(A) = bdλ(X \A).

(5) X \ bdλ(A) = X \ (Clλ(A) ∩ Clλ(X \ A)) = (X \ Clλ(A)) ∪ (X \
Clλ(X \A)) = Intλ(X \A) ∪ Intλ(A).

(6) bdλ(A) = Clλ(A) ∩ Clλ(X \ A) = Clλ(A) ∩ (X \ Intλ(A)) =
Clλ(A) \ Intλ(A).

Second part: We know bdλ(A) = bdλ(X \ A). Then we replaced A
by X \ A in the above relation and we get bdλ(A) = bdλ(X \ A) =
Clλ(X \A) \ Intλ(X \A).

(7) bdλ(A) = Clλ(A) ∩ Clλ(X \A) = Clλ(A) ∩ (X \ Intλ(A)) = (X \
Intλ(X\A))∩(X\Intλ(A)). Then for x ∈ bdλ(A), x ∈ (X\Intλ(X\A))
and x ∈ (X \ Intλ(A)). Thus x /∈ Intλ(X \ A) and x /∈ Intλ(A).
Therefore bdλ(A) is the set of all x ∈ X such that x /∈ Intλ(A) and
x /∈ Intλ(X \A).

(8) Since bdλ(A) ⊂ Clλ(A), thenA∪bdλ(A) ⊂ Clλ(A) (∵ Clλ(A)∪A =
Clλ(A)).

(9) Given that Clλ(A) ⊃ A ∪ bdλ(A). Then Clλ(X \ A) ⊃ (X \ A) ∪
bdλ(X\A) = (X\A)∪bdλ(A). Thus X\Intλ(A) ⊃ (X\A)∪bdλ(A), and
Intλ(A) ⊂ (X \ (X \A))∩ (X \bdλ(A)) = A∩ (X \bdλ(A)) = A\bdλ(A).

(10) We have bdλ(A) ∪ A ⊂ Clλ(A) = A as A is λ-closed. Thus
bdλ(A) ∪A ⊂ A, and hence bdλ(A) ⊂ A.

(11) Suppose that A∩bdλ(A) = ∅. Then A∩(Clλ(A)∩Clλ(X\A)) = ∅,
and A ∩ Clλ(X \A) = ∅. This implies that A ∩ (X \ Intλ(A)) = ∅, and
hence A \ Intλ(A) = ∅. So A ⊆ Intλ(A), and A = Intλ(A). Therefore
A is λ-open.

Suppose A is λ-open in X. If possible A ∩ bdλ(A) ̸= ∅. Suppose
x ∈ A ∩ bdλ(A), then x ∈ A and x ∈ Clλ(A) ∩ Clλ(X \ A). Then
x ∈ X \ A as A is λ-open set in X, a contradiction to the fact that
x ∈ A. Thus A ∩ bdλ(A) = ∅. �

The reverse inclusion of (1) of the above Theorem need not hold in
general.

Example 2.9. Let X = {a, b, c}, τ = {∅, X, {a}, {b}, {a, b}}. Then
λ(X) = {∅, X, {a}, {b}, {a, b}, {a, c}, {b, c}} and C(λ(X)) (all λ-closed
sets in X) = {∅, X, {b, c}, {a, c}, {c}, {b}, {a}}. Let A = {b}, then
bdλ(A) = Clλ({b})∩Clλ({a, c}) = ∅ but bd(A) = Cl({b})∩Cl({a, c}) ̸=
∅.
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Definition 2.10. Extλ(A) = Intλ(X \ A) is said to be a λ-exterior of
A.

Theorem 2.11. For a subset A of a topological space X, the following
statements hold:

(1) Ext(A) ⊂ Extλ(A) where Ext(A) denotes the exterior of A.
(2) Extλ(A) is open.
(3) Extλ(A) = Intλ(X \A) = X \ Clλ(A).
(4) Extλ(Extλ(A)) = Intλ(Clλ(A)).
(5) If A ⊂ B, then Extλ(A) ⊃ Extλ(B).
(6) Extλ(A ∪B) ⊂ Extλ(A) ∪ Extλ(B).
(7) Extλ(A ∩B) ⊃ Extλ(A) ∩ Extλ(B).
(8) Extλ(X) = ∅.
(9) Extλ(∅) = X.
(10) Extλ(X \Extλ(A)) ⊂ Extλ(A).
(11) Intλ(A) ⊂ Extλ(Extλ(A)).
(12) X = Intλ(A) ∪ Extλ(A) ∪ bdλ(A).

Proof. (1) Obvious and hence omitted.
(2) It is obvious from Extλ(A) = Intλ(A) = Intλ(X \A).
(3) It is obvious from Extλ(A) = Intλ(A) = Intλ(X \A).
(4) Extλ(Extλ(A)) = Extλ(X \Clλ(A)) = Intλ(X \ (X \Clλ(A))) =

Intλ(Clλ(A)).
(5) Since (X \A) ⊃ (X \B) as A ⊂ B. Then Intλ(X \A) ⊃ Intλ(X \

B). Hence the result.
(6) We have from (5), Extλ(A ∪B) ⊂ Extλ(A) ∪ Extλ(B).
(7) It is obvious from (5).
(8) It is obvious from the relation Extλ(A) = Intλ(X \A).
(9) It is obvious from the fact that Extλ(A) = Intλ(X \A).
(10) Extλ(X \ Extλ(A)) = Extλ(X \ Intλ(X \ A)) = Intλ(X \ (X \

Intλ(X \A))) = Intλ(Intλ(X \A)) ⊂ Intλ(X \A) = Extλ(A).
(11) Intλ(A) ⊂ Intλ(Clλ(A)) = Intλ(X \ Intλ(X \ A)) = Intλ(X \

Extλ(A)) = Extλ(Extλ(A)).
(12) We have Intλ(A) ∪ Extλ(A) ∪ bdλ(A) = Intλ(A) ∪ (Clλ(A) ∩

Clλ(X \A))∪Extλ(A) = Clλ(A)∪Extλ(A) = Clλ(A)∪ Intλ(X \A) =
Clλ(A) ∪ (X \ Clλ(A)) = X. �

The relation ‘⊂’ can not be replaced by ‘=’ of Extλ(A∪B) ⊂ Extλ(A)∪
Extλ(B), which is followed by the following Example:

Example 2.12. Let X = {a, b, c}, τ = {∅, X, {a}, {b}, {a, b}}, then
λ(X) = {∅, X, {a}, {b}, {a, b}, {a, c}, {b, c}}. Suppose A = {a, b} and
B = {b, c}, then Extλ(A) = ∅ and Extλ(B) = {a} but Extλ(A∪B) = ∅.
Thus Extλ(A ∪B) ̸= Extλ(A) ∪ Extλ(B).
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Theorem 2.13. Let A be a subset of a topological space X. Then fol-
lowing holds:

(1) A is dense in X if and only if A ∩ U ̸= ∅ for every nonempty
λ-open set U in X.

(2) If Intλ(A) = ∅, then X \A is dense in X.
(3) X \ bλ(A) is dense in X.
(4) If Extλ(A) = ∅, then A is dense in X.

Proof. (1) Suppose A is dense in X. Then for every nonempty open
subset V of X, V ∩A ̸= ∅. Let U be a nonempty λ-open set in X. Since
U contains a nonempty open subset of X, then U ∩A ̸= ∅.

Conversely suppose that A ∩ U ̸= ∅ for every nonempty λ-open sets
U in X. As every open sets is also a λ-open set, thus A ∩ V ̸= ∅ for
every nonempty open set V of X.

(2) Clλ(X \ A) = X \ Intλ(A) = X (as Intλ(A) = ∅), thus X \ A is
dense in X.

(3) Since Intλ(bλ(A)) = ∅ (from Theorem 2.6(5)), then X \ bλ(A) is
dense in X.

(4) Let Extλ(A) = ∅. Then from Theorem 2.11(12), X = Intλ(A) ∪
bdλ(A) = Clλ(A) (from Theorem 2.8(2)) �

3. Conclusion

In this paper, we have discussed the idea of limit points, border,
boundary points, exterior points etc. We have considered extensions of
the topological space with help of a new type of sets which is the gener-
alization of generalized open sets in the topological spaces.

Acknowledgement: (i) The author is thankful to the referees for
their valuable suggestions.

(ii) The author is also acknowledging Dr. Samipendra Banerjee for
his suggestions regarding language.

References
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