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Abstract. Let (X, d) be a compact metric space and let K be a
nonempty compact subset of X. Let α ∈ (0, 1] and let Lip(X,K, dα)
denote the Banach algebra of all continuous complex-valued func-

tions f on X for which p(K,dα)(f) = sup{ |f(x)−f(y)|
dα(x,y)

: x, y ∈ K,x 6=
y} < ∞ when equipped with the algebra norm ||f ||Lip(X,K,dα) =
||f ||X +p(K,dα)(f), where ||f ||X = sup{|f(x)| : x ∈ X}. We denote
by lip(X,K, dα) the closed subalgebra of Lip(X,K, dα) consisting

of all f ∈ Lip(X,K, dα) for which |f(x)−f(y)|
dα(x,y)

→ 0 as d(x, y) → 0

with x, y ∈ K. In this paper we show that every proper closed ideal
of (lip(X,K, dα), ‖ · ‖Lip(X,K,dα)) is the intersection of all maximal
ideals containing it. We also prove that every continuous point
derivation of lip(X,K, dα) is zero. Next we show that lip(X,K, dα)

is weakly amenable if α ∈ (0, 1
2
). We also prove that lip(T,K, d

1
2 )

is weakly amenable where T = {z ∈ C : |z| = 1}, d is the Euclidean
metric on T and K is a nonempty compact set in (T, d).
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1. Introduction and preliminaries

We denote by R, C, T and N the set of all real numbers, the set of all
complex numbers, the unit circle in complex plane C and the set of all
positive integer numbers, respectively.

Let A be a complex algebra and let ϕ be a multiplicative linear func-
tional on A. A linear functional D on A is called a point derivation on
A at ϕ if

D(fg) = ϕ(f)Dg + ϕ(g)Df,

for all f, g ∈ A. We say that ϕ is a character on A if ϕ(f) 6= 0 for some
f ∈ A. We denote by ker(ϕ) the set of all f ∈ A for which ϕ(f) = 0.
Clearly, ker(ϕ) is a proper ideal of A.

Let A be a complex algebra. We denote by ∆(A) the set of all char-
acters on A which is called the character space of A. For a subset S of
∆(A), we define ker(S) = A when S = ∅ and ker(S) =

⋂
ϕ∈S

ker(ϕ) when

S 6= ∅.
Let (A, ‖ · ‖) be a commutative unital complex Banach algebra. We

know that ∆(A) 6= ∅ and it is a compact Hausdorff space with the
Gelfand topology. Moreover, ker(ϕ) is a maximal ideal of A for all
ϕ ∈ ∆(A) and every maximal ideal of A has the form ker(ψ) for some
ψ ∈ ∆(A). Let I be an ideal of A. The hull of I is the set of all ϕ ∈ ∆(A)
such that ϕ(f) = 0 for all f ∈ I. We denote by hull(I) the hull of I.
Let S be a nonempty subset of ∆(A). We define

IA(S) = {f ∈ A : there is an open set V in ∆(A) with S ⊆ V
such that ϕ(f) = 0 for all ϕ ∈ V },

and JA(S) = IA(S), the closure of IA(S) in (A, ‖ · ‖). Clearly, ker(S)
and JA(S) are closed ideals of A and S is contained in hull(JA(S)).

Let (A, ‖ · ‖) be a commutative unital complex Banach algebra. Then
A is called regular if for every proper closed subset S of ∆(A) and each

ϕ ∈ ∆(A)\S, there exists an f in A such that f̂(ϕ) = 1 and f̂(S) = {0},
where f̂ is the Gelfand transform of f .

The following theorem is due to Šilov. For a proof see[10] or [6].

Theorem 1.1. Let (A, ‖ · ‖) be a regular Banach algebra. Then the
following statements holds.

(i) If S is a nonempty closed subset of ∆(A), then

hull(JA(S)) = S,

and if I is a closed ideal of A such that hull(I) = S, then JA(S)
is contained in I.
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(ii) If I is a closed ideal of A, then

JA(hull(I)) ⊆ I ⊆ ker(hull(I)).

Let A be a complex algebra and X be an A-module with respect to
module operations (a, x) → x · a : A × X → X and (a, x) → a · x :
A× X→ X. We say that X is symmetric or commutative if a · x = x · a
for all a ∈ A and x ∈ X. A complex linear map D : A→ X is called an
X-derivation on A if D(ab) = Da · b + a ·Db for all a, b ∈ A. For each
x ∈ X, the map δx : A→ X defined by

δx(a) = a · x− x · a (a ∈ A),

is an X-derivation on A. An X-derivation D on A is called inner X-
derivation on A if D = δx for some x ∈ X.

Let A be a complex Banach algebra and X be an A-module. We say
that X is a Banach A-module if X is a Banach space and there exists a
constant k such that

‖a · x‖ ≤ k‖a‖‖x‖, ‖x · a‖ ≤ k‖a‖‖x‖,
for all a ∈ A and x ∈ X.

Let (A, ‖ · ‖) be a complex Banach algebra. Then A is a Banach A-
module if the left and right module operations are considered by a.b = ab
and a.b = ba, respectively. If X is a Banach A-module, then X∗, the dual
space of X, is a Banach A-module with the natural module operations

(a · λ)(x) = λ(x · a), (λ · a)(x) = λ(a · x) (a ∈ A, λ ∈ X∗, x ∈ X).

Let A be a complex Banach algebra and X be a Banach A-module.
The set of all continuous X-derivations on A is a complex linear space,
denoted by Z1(A,X). The set of all inner X-derivations on A is a com-
plex linear subspace of Z1(A,X), denoted by B1(A,X). The quotient
space Z1(A,X)

/
B1(A,X) is denoted by H1(A,X) and called the first

cohomology group of A with coefficients in X.

Definition 1.2. Let A be a complex Banach algebra. We say that A
is weakly amenable if H1(A,A∗) = {0}, that is, every continuous A∗-
derivation on A is inner.

Above definition was first given by Johnson in [4]. The notion of weak
amenability was first defined for commutative complex Banach algebras
by Bade, Curtis and Dales in [2] as the following:

The commutative complex Banach algebraA is called weakly amenable
if Z1(A,X) = {0} for every symmetric Banach A-module X, that is, ev-
ery continuous X-derivation on A is necessarily inner for each symmetric
Banach A-module X.

These two definitions are equivalent when A is commutative by [2,
Theorem 1.5] and [5, Theorem 3.2].
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It is known [2] that if A is a commutative unital complex Banach
algebra and A has a nonzero continuous point derivation, then A is not
weakly amenable.

The following result is useful and one can prove it as similar the proof
of [3, Theorem VI.43.11].

Theorem 1.3. Let A and B be complex Banach algebra, A be weakly
amenable and Φ : A → B be a continuous algebra homomorphism such
that Φ(A) is dense in B. Then B is weakly amenable.

Let X be a compact Hausdorff space. We denote by C(X) the com-
mutative unital complex Banach algebra consisting of all complex-valued
continuous functions on X under the uniform norm on X which is de-
fined by

‖f‖X = sup{|f(x)| : x ∈ X} (f ∈ C(X)).

A complex Banach function algebra on X is a complex subalgebra A of
C(X) such that A separates the points of X, contains 1X (the constant
function on X with value 1) and it is a unital Banach algebra under an
algebra norm ‖ · ‖. Since C(X) separates the points of X by Urysohn’s
lemma [7, Theorem 2.12], 1X ∈ C(X) and (C(X), ‖ · ‖X) is a unital
complex Banach algebra, we deduce that (C(X), ‖ · ‖X) is a Banach
function algebra on X.

Let (A, ‖ · ‖) be a Banach function algebra on X. For each x ∈ X,
the map ex : A→ C, defined by ex(f) = f(x) (f ∈ A), is an element of
∆(A) which is called the evaluation character on A at x. It follows that

A is semisimple and ‖f‖X ≤ ‖f̂‖∆(A) for all f ∈ A. Moreover, the map
EX : X → ∆(A) defined by EX(x) = ex is injective and continuous.
If EX is surjective, then we say that A is natural. In this case, EX
is a homeomorphism from X onto ∆(A). It is known that if (A, ‖ · ‖)
is a self-adjoint inverse-closed Banach function algebra on X then A is
natural. Therefore, (C(X), ‖ · ‖X) is natural.

Let A be a complex Banach function algebra on a compact Hausdorff
X. If A is regular, then for each proper closed subset F of X and
each x ∈ X \ F there exists a function f in A such that f(x) = 1 and
f(F ) = {0}. Moreover, the converse of above statement holds whenever
A is natural.

Theorem 1.4. Let X be a compact Hausdorff space, (A.‖ · ‖A) be a
natural Banach function algebra on X and (B, ‖·‖B) be a regular Banach
function algebra on X such that B ⊆ A. Then (A, ‖ · ‖A) is regular.

Proof. Let F be a proper closed subset of X and x ∈ X \ E. The
regularity of (B, ‖ · ‖B) implies that there exists a function f in B such
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that f(x) = 1 and f(F ) = {0}. Since B ⊆ A, and (A, ‖ · ‖A) is natural,
the proof is complete. �

Let (X, d) be a metric space. For α > 0, a complex-valued function
f on X is a Lipschitz function of order α on X if there exists a positive
constant M such that |f(x)−f(y)| ≤M(d(x, y))α for all x, y ∈ X. If α ∈
(0, 1], the map dα : X ×X → R, defined by dα(x, y) = (d(x, y))α (x, y ∈
X), is a metric on X and the induced topology on X by dα coincides
with the induced topology on X by d.

Let (X, d) be a compact metric space and α ∈ (0, 1]. We denote by
Lip(X, dα) the set of all complex-valued Lipschitz functions on (X, dα).
Then Lip(X, dα) is a complex subalgebra of C(X) and 1X ∈ Lip(X, dα).
Moreover, Lip(X, d) separates the points of X. For a nonempty subset
K of X, and a complex-valued function f on K, we set

p(K,dα)(f) = sup{|f(x)− f(y)|
dα(x, y)

: x, y ∈ K,x 6= y}.

Clearly, f ∈ Lip(X, dα) if and only if p(X,dα)(f) <∞. The dα-Lipschitz
norm ‖ · ‖Lip(X,dα) on Lip(X, dα) is defined by

‖f‖Lip(X,dα) = ‖f‖X + p(X,dα)(f) (f ∈ Lip(X, dα)).

Then (Lip(X, dα), ‖·‖Lip(X,dα)) is a commutative unital complex Banach
algebra. The set of all complex-valued functions f on X for which

lim
d(x,y)→0

|f(x)− f(y)|
dα(x, y)

= 0,

is a closed complex subalgebra of (Lip(X, dα), ‖ · ‖Lip(X,dα)) containing
1X . This algebra is called little Lipschitz algebra of order α on (X, d)
and denoted by lip(X, dα). It is known that Lip(X, dβ) is a complex
subalgebra of lip(X, dα) whenever 0 < α < β ≤ 1. Lipschitz algebras
Lip(X, dα) and little Lipschitz algebras lip(X, dα) were first studied by
Sherbert in [8] and [9].

Bade, Curtis and Dales studied the weak amenability of little Lips-
chitz algebras in [2] and obtained the following results that we use them
in the sequel.

Theorem 1.5 (see [2, Theorem 3.10]). Let (X, d) be a compact metric
space and α ∈ (0, 1

2). Then lip(X, dα) is weakly amenable.

Theorem 1.6 (see [2, Theorem 3.13]). Let d be the Euclidean metric

on T. Then lip(T, d
1
2 ) is weakly amenable.

Let (X, d) be a compact metric space, K be a nonempty compact
subset of X and α ∈ (0, 1]. We denote by Lip(X,K, dα) the set of
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f ∈ C(X) for which p(K,dα)(f) <∞. In fact,

Lip(X,K, dα) = {f ∈ C(X) : f |K ∈ Lip(K, dα)}.
Clearly, Lip(X, dα) ⊆ Lip(X,K, dα) and Lip(X,K, dα) = Lip(X, dα) if
K = X. Moreover, Lip(X,K, dα) is a self-adjoint inverse-closed complex
subalgebra of C(X). It is easy to see that Lip(X,K, dα) is a complex
subalgebra of C(X) and a unital Banach algebra under the algebra norm
‖ · ‖Lip(X,K,dα) defined by

‖f‖Lip(X,K,dα) = ‖f‖X + p(K,dα)(f) (f ∈ Lip(X,K, dα)).

Therefore, (Lip(X,K, dα), ‖ · ‖Lip(X,K,dα)) is a natural Banach function
algebra on X. This algebra is called extended Lipschitz algebra of order
α on (X, d) with respect to K. We denote by lip(X,K, dα) the set of all
f ∈ C(X) for which

lim
d(x,y)→0
x,y∈K

|f(x)− f(y)|
dα(x, y)

= 0.

In fact,

lip(X,K, dα) = {f ∈ C(X) : f |K ∈ lip(K, dα)}.
Clearly, lip(X,K, dα) is a complex subalgebra of Lip(X,K, dα) con-
taining 1X and a closed set in (Lip(X,K, dα), ‖ · ‖Lip(X,K,dα)). This
algebra is called extended little Lischitz algebra of order α on (X, d)
with respect to K. Clearly, Lip(X, d) ⊆ lip(X, dα) ⊆ lip(X,K, dα)
and lip(X,K, dα) = lip(X, dα) if K = X. Moreover, lip(X,K, dα) is
self-adjoint inverse-closed. Therefore, (lip(X,K, dα), ‖ · ‖Lip(X,K,dα)) is a
natural Banach function algebra on X. It is clear that Lip(X,K, dα) =
lip(X,K, dα) = C(X) whenever K is finite.

Extended Lipschitz algebras and extended little Lipschitz algebras
were first introduced in [4].

The following result is obtained in [1] that we use it in the sequel.

Theorem 1.7 (see [1, Corollary 2.9]). Let (X,d) be a compact metric
space, K be a nonempty compact subset of X and α ∈ (0, 1). Then
lip(X, dα) is dense in (lip(X,K, dα), ‖ · ‖Lip(X,K,dα)).

Let (X, d) be a metric space, f be a real-valued function on X and
k > 0. The real-valued function Tkf on X defined by

(Tkf)(x) =

 −k f(x) < −k
f(x) −k 6 f(x) 6 k
k f(x) > k

(x ∈ X)

is called the truncation of f at k.
The following result is useful in the sequel and its proof is straight-

forward.
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Theorem 1.8. Let (X, d) be a compact metric space, K be a nonempty
compact subset of X and α ∈ (0, 1). Suppose that f is a real-valued
function in lip(X,K, dα) and k > 0. Then Tkf is in lip(X,K, dα).

In Section 2, we show that extended little Lipschitz algebras are reg-
ular. We also determine the structure of closed ideals of these Banach
algebras. In Section 3, we prove that every continuous point derivation
on an extended little Lipschitz algebra is zero. In Section 4, we show
that certain extended little Lipschitz algebras are weakly amenable.

2. Closed Ideals of Extended Little Lipschitz Algebras

Throughout this section we always assume that (X, d) is a compact
metric space, K is a nonempty compact subset of X and α ∈ (0, 1). We
show that every closed ideal I in lip(X,K, dα) is the form ker(EX(Y ))
for some closed subset Y of X. Equivalently, every closed ideal in
lip(X,K, dα) is the intersection of the maximal ideals containing it. To
prove of this result we need following two results.

Theorem 2.1. Let A = lip(X,K, dα). Then (A, ‖ · ‖Lip(X,K,dα)) is reg-
ular.

Proof. We know that (A, ‖ · ‖Lip(X,K,dα)) is a natural Banach function

algebra on X. On the other hand, (Lip(X, d1), ‖ · ‖Lip(X,d1)) is a regular

Banach function algebra on X by [9, Proposition 2.1]. Since Lip(X, d1)
is a subset of lip(X,K, dα), we deduce that (A, ‖ · ‖Lip(X,K,dα)) is regular
by Theorem 1.4. �

Lemma 2.2. Let f ∈ lip(X,K, dα) with Z(f) 6= ∅, where Z(f) = {x ∈
X : f(x) = 0}. Then there exists a sequence {fn}∞n=1 in lip(X,K, dα)
satisfying:

(i) for each n ∈ N, there is an open set Un in X with Z(f) ⊆ Un
such that fn|Un = f |Un,

(ii) lim
n→∞

‖fn‖Lip(X,K,dα) = 0.

Proof. We first assume that f is real-valued. Let n ∈ N. We define
fn = T 1

n
f , the truncation of f at 1

n . Then fn ∈ lip(X,K, dα) by Theorem

1.8. Let

Un = {x ∈ X : |f(x)| < 1

n
}.

The continuity of f implies that Un is an open set in X. Moreover,
Z(f) ⊆ Un and fn|Un = f |Un . Hence (i) is satisfied.

Since ‖fn‖X ≤ ‖T 1
n
f‖X ≤ 1

n for each n ∈ N, we deduce that

lim
n→∞

‖fn‖X = 0.
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To establish (ii), it is remains to show that

lim
n→∞

p(K,dα)(fn) = 0.

Let ε > 0 be given. Since f ∈ lip(X,K, dα), there is a δ > 0 such that

|f(x)− f(y)|
dα(x, y)

<
ε

2
,

whenever x, y ∈ K and 0 < d(x, y) < δ.
Let x, y ∈ K with 0 < d(x, y) < δ. By definition of {fn}∞n=1, we have

|fn(x)− fn(y)| ≤ |f(x)− f(y)| for all n ∈ N and so

|fn(x)− fn(y)|
dα(x, y)

≤ |f(x)− f(y)|
dα(x, y)

<
ε

2
,

for all n ∈ N.
Let x, y ∈ K with d(x, y) ≥ δ. Then we have

|fn(x)− fn(y)|
dα(x, y)

≤ |fn(x)|+ |fn(y)|
δα

≤ 2

nδα
,

for all n ∈ N. Let n ∈ N with n > 4
3δα . Then we have

|fn(x)− fn(y)|
dα(x, y)

<
ε

2
,

for all x, y ∈ K with x 6= y. Thus

p(K,dα)(fn) ≤ ε

2
< ε,

and so

lim
n→∞

p(K,dα)(fn) = 0.

Therefore, (ii) holds.
We now assume that f is complex-valued. Let g = Re f and h = Im f .

Then g and h are real-valued functions in lip(X,K, dα), f = g + ih and
Z(f) = Z(g)

⋂
Z(h). By the above argument, there exists the sequence

of real-valued functions {gn}∞n=1 and {hn}∞n=1 in lip(X,K, dα) satisfying:

(I) for each n ∈ N, there is an open set Vn in X with Z(h) ⊆ Vn
such that gn|Vn = g|Vn ,

(II) lim
n→∞

‖gn‖Lip(X,K,dα) = 0,

(III) for each n ∈ N, there is an open set Wn in X with Z(h) ⊆ Wn

such that hn|Wn = h|Wn ,
(IV) lim

n→∞
‖hn‖Lip(X,K,dα) = 0.

Let fn = gn + ihn and Un = Vn
⋂
Wn for all n ∈ N. Then {fn}∞n=1 is a

sequence in lip(X,K, dα) and by (II) and (IV) we have

lim
n→∞

‖fn‖Lip(X,K,dα) = 0.
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Moreover, Un is an open set in X with Z(f) ⊆ Un and fn|Un = f |Un for
all n ∈ N by (I) and (III). Therefore, the sequence {fn}∞n=1 satisfying (i)
and (ii). �

Theorem 2.3. Let A = lip(X,K, dα) and I be a closed ideal of (A, ‖ ·
‖Lip(X,K,dα)). Then I = ker(hull(I)).

Proof. If I = A, then hull(I) = ∅ and so

ker(hull(I)) = A = I.

Let I be a proper closed ideal of (A, ‖ · ‖Lip(X,K,dα)). By Theorem 2.1,
(A, ‖ · ‖Lip(X,K,dα)) is a regular commutative Banach algebra. Therefore,
by part (ii) of Theorem 1.1 we have

JA(hull(I)) ⊆ I ⊆ ker(hull(I)). (2.1)

Since hull(I) 6= ∅, we deduce that ker(hull(I)) is a proper closed ideal of
(A, ‖ · ‖Lip(X,K,dα)). Let f ∈ ker(hull(I)). Then Z(f) 6= ∅. By Lemma
2.2, there exists a sequence {fn}∞n=1 in A satisfying:

(i) for each n ∈ N, there is an open set Un in X with Z(f) ⊆ Un
such that fn|Un = f |Un ,

(ii) lim
n→∞

||fn||Lip(X,K,dα) = 0.

Let n ∈ N. Define Vn = {ex : x ∈ Un}. Then Vn is an open set in
∆(lip(X,K, dα)) and we have

f̂n(ex) = ex(fn) = fn(x) = f(x) = ex(f) = f̂(ex),

for all x ∈ Un. So f̂n(ϕ) = f̂(ϕ) for all ϕ ∈ Vn. This implies that
f ∈ JA(hull(I)) by regularity of (A, ‖ · ‖Lip(X,K,dα)) and [9, Lemma 3.1].
So

ker(hull(I)) ⊆ JA(hull(I)). (2.2)

From (2.1) and (2.2), we have I = ker(hull(I)). �

Corollary 2.4. Let A = lip(X,K, dα). and I be a proper ideal of A.
Then the following statements are equivalent.

(i) I is a closed ideal of (A, ‖ · ‖Lip(X,K,dα)).
(ii) There exists a closed subset Y of X such that I = ker(EX(Y )).
(iii) I is the intersection of all maximal ideals of A containing it.

Proof. (i)⇒(ii). By Theorem 2.3, we have

I = ker(hull(I)). (2.3)

Since hull(I) = {ϕ ∈ ∆(A) : ϕ(f) = 0 (f ∈ I)} and EX : X → ∆(A)
defined by EX(x) = ex (x ∈ X) is bijective, we have

hull(I) = {EX(x) : x ∈ X, f(x) = 0 (f ∈ I)}.
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Let Y = {x ∈ X : f(x) = 0 (f ∈ I)}. Then Y is a closed set in (X, d)
and hull(I) = EX(Y ). Therefore, I = ker(EX(Y )) by (2.3) and so (ii)
holds.
(ii)⇒(iii). Suppose that Y is a closed set in (X, d) such that

I = ker(EX(Y )). (2.4)

Since

ker(EX(Y )) =
⋂

ϕ∈EX(Y )

{f ∈ A : ϕ(f) = 0}

and

EX(Y ) = {ey : y ∈ Y },
we deduce that

ker(EX(Y )) =
⋂
y∈Y
{f ∈ A : f(y) = 0}. (2.5)

From (2.4) and (2.5), we have

I =
⋂
y∈Y
{f ∈ A : f(y) = 0}. (2.6)

Since {f ∈ A : f(y) = 0} is a maximal ideal of A for all y ∈ Y , we
deduce that I contains the intersection of all maximal ideals M of A
such that I ⊆M .

On the other hand, I is contained in the intersection of all maximal
ideals M of A such that I ⊆M . Therefore, (iii) holds.
(iii)⇒(ii). It is obvious. �

3. Point Derivations of Extended Little Lipschitz Algebras

Let (A, ‖ · ‖) be a commutative complex unital Banach algebra and I
be an ideal of A. Set

I2 = {
n∑
i=1

αifigi : n ∈ N, αi ∈ C, fi, gi ∈ I (i ∈ {1, ..., n})}.

Clearly, I2 is also an ideal of A. For each ϕ ∈ ∆(A), we denote by Dϕ

the set of all continuous point derivations on A at ϕ. We say that Dϕ

is nontrivial if Dϕ \ {0} 6= ∅.
Let (X, d) be a compact metric space, K be a nonempty compact

subset of X and α ∈ (0, 1). We show that Dϕ = {0} for all ϕ ∈
∆(lip(X,K, dα)). To prove this fact, we need the following theorem is
due to Singer and Wermer obtained in [11].

Theorem 3.1. Let (A, ‖ · ‖) be a commutative complex unital Banach
algebra with unit 1 and ϕ ∈ (A). Then



Closed Ideals, Point Derivations and Weak Amenability of Extended... 33

(i) D ∈ A∗ is a point derivation at ϕ if and only if D1 = 0 and

Df = 0 for all f ∈ (ker(ϕ))2.

(ii) Dϕ is nontrivial if and only if ker(ϕ) 6= (ker(ϕ))2.

Theorem 3.2. Let (X, d) be a compact metric space, K be a nonempty
compact subset of X, α ∈ (0, 1) and A = lip(X,K, dα). If ϕ ∈ ∆(A),
then

(ker(ϕ))2 = ker(ϕ).

Proof. Let ϕ ∈ ∆(A). Clearly,

(ker(ϕ))2 ⊆ ker(ϕ).

Since ker(ϕ) is closed in (A, ‖ · ‖Lip(X,K,dα)), we deduce that

(ker(ϕ))2 ⊆ ker(ϕ). (3.1)

Since ker(ϕ) is a proper ideal of A and (ker(ϕ))2 is an closed ideal

of (A, ‖ · ‖Lip(X,K,dα)), we conclude that (ker(ϕ))2 is a proper closed

ideal of (A, ‖ · ‖Lip(X,K,dα)) by (3.1). By Corollary 2.4, (ker(ϕ))2 is the
intersection of all maximal ideals of A containing it. The naturality of
A implies that there exists a unique x ∈ X such that ϕ = ex. Let M be
a maximal ideal of A such that

(ker(ϕ))2 ⊆M. (3.2)

Since (A, ‖ · ‖Lip(X,K,dα)) is a unital commutative Banach algebra, there
exists a unique ψ ∈ ∆(A) such that M = ker(ψ). The naturality of
Banach function algebra (A, ‖ · ‖Lip(X,K,dα)) implies that there exists a
unique y ∈ X such that ψ = ey. We claim that y = x. Let y 6= x.
Since (A, ‖ · ‖Lip(X,K,dα)) is a regular Banach function algebra on X,
there exists a function f ∈ A such that f(x) = 0 and f(y) = 1. So
f2 ∈ (ker(ϕ))2 and f2 /∈ M , contradicting to (3.2). Hence, our claim
is justified. This implies that M = ker(ex) = ker(ϕ). Hence, ker(ϕ) is

the only maximal ideal space of A containing (ker(ϕ))2. Therefore, by
Corollary 2.4 we have

(ker(ϕ))2 = ker(ϕ).

This completes the proof. �

Theorem 3.3. Let (X, d) be a compact metric space, K be a nonempty
compact subset of X, α ∈ (0, 1) and A = lip(X,K, dα). Then every
continuous point derivation on (A, ‖ · ‖Lip(X,K,dα)) is zero.

Proof. Let ϕ ∈ ∆(A). By Theorem 3.2, we have

(ker(ϕ))2 = ker(ϕ).
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This implies that Dϕ = {0} by Theorem 3.1. Hence, the proof is com-
plete. �

4. Weak Amenability of Certain Extended Little Lipschitz
Algebras

Let (X, d) be a compact metric space, K be a nonempty compact
subset of X, α ∈ (0, 1) and A = lip(X,K, dα). By Theorem 3.3, all
continuous point derivations on (A, ‖ · ‖Lip(X,K,dα)) are zero. It follows
that (A, ‖ · ‖Lip(X,K,dα)) has some chance of being weakly amenable. We
give some sufficient conditions that (A, ‖ · ‖Lip(X,K,dα)) to be weakly
amenable.

Theorem 4.1. Let (X, d) be a compact metric space, K be a nonempty
compact subset of X, α ∈ (0, 1

2) and A = lip(X,K, dα). Then (A, ‖ ·
‖Lip(X,K,dα)) is weakly amenable.

Proof. By Theorem 1.5, (lip(X, dα), ‖ · ‖Lip(X,dα) is weakly amenable.
Let Φ : lip(X, dα) → A defined by Φ(f) = f (f ∈ lip(X, dα)). Clearly,
Φ(lip(X, dα)) = lip(X, dα) and Φ is an algebra homomorphism from
lip(X, dα) into A. Since

‖Φ(f)‖Lip(X,K,dα) = ‖f‖Lip(X,K,dα) = ‖f‖X + p(K,dα)(f)

≤ ‖f‖X + p(X,dα)(f) = ‖f‖Lip(X,dα)

for all f ∈ lip(X, dα), we deduce that Φ is continuous. On the other
hand, lip(X, dα) and so Φ(lip(X, dα)) is dense in (A, ‖ · ‖Lip(X,K,dα))
by Theorem 1.7. Therefore, (A, ‖ · ‖Lip(X,K,dα)) is weakly amenable by
Theorem 1.3. �

Theorem 4.2. Let d be the Euclidean metric on T, K be a nonempty
compact set in (T, d) and α ∈ (0, 1

2 ]. Then (lip(T,K, dα), ‖ · ‖Lip(T,K,dα))
is weakly amenable.

Proof. By Theorem 4.1, (lip(T,K, dα), ‖ · ‖Lip(T,dα)) is weakly amenable

whenever α ∈ (0, 1
2). Suppose that α = 1

2 . By Theorem 1.6, (lip(T, dα), ‖·
‖Lip(T,dα)) is weakly amenable. By given argument in the proof of The-
orem 4.1, the map Φ : lip(T, dα) → lip(T,K, dα) defined by Φ(f) = f
is a continuous algebra homomorphism from (lip(T, dα), ‖·‖Lip(T,dα)) into
(lip(T,K, dα), ‖·‖Lip(T,K,dα)) and Φ(lip(T, dα)) is dense in (lip(T,K, dα), ‖·
‖Lip(T,K,dα)). Therefore, (lip(T,K, dα), ‖·‖Lip(T,K,dα)) is weakly amenable
by Theorem 1.3. �
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