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Abstract. In this paper we solve a wide rang of Semidefinite
Programming (SDP) Problem by using Recurrent Neural Networks
(RNNs). SDP is an important numerical tool for analysis and syn-
thesis in systems and control theory. First we reformulate the prob-
lem to a linear programming problem, second we reformulate it
to a first order system of ordinary differential equations. Then a
recurrent neural network model is proposed to compute related pri-
mal and dual solutions simultaneously. Illustrative examples are
included to demonstrate the validity and applicability of the tech-
nique.
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1. Introduction

A semidefinite programming problem is a generalization of linear pro-
gramming and has various applications in system and control theory
and combinatorial optimization. Due to its many applications in control
theory, robust optimization, combinatorial optimization and eigenvalue

1 Corresponding author: mirhosseini@phd.pnu.ac.ir
Received: 30 January 2013
Revised: 01 November 2015
Accepted: 10 November 2015

205

http://cjms.journals.umz.ac.ir


206 A. Malek , S. M. Mirhosseini Alizamini and G. Ahmadi

optimization, semidefinite programming had been in widespread use. In
the resent years development of efficient algorithms brought it into the
realm of tractability [1,3,6]. Today it is one of the basic modeling and
optimization tools along with linear and quadratic programming. A very
good overview of the applications is provided by Guoyin et al. [3]. So
far, a significant number of reports has been devoted to generalizing the
interior point method to semidefinite programming [8]. Yashita et al. [5],
Ghami et al. [2], presented primal-dual interior algorithms for semidefi-
nite programming. This paper presents a new recurrent neural network
for solving linear semidefinite programming problems. The mentioned
model is simpler and more intuitive than existing models and converges
very fast to the exact primal and dual solutions. The model is based
on a nonlinear dynamical system and has an interesting economic inter-
pretation. Frankly, we concentrate here on generalizing the primal-dual
method and neural network model of linear programming towards semi-
definite programming [4,7].

The paper is organized as follows. In Section 2, we review some
basic notations from linear algebra and fundamental properties of the
cone of positive semidefinite matrices. Semidefinite programs and their
duals are introduced in this section. In Section 3, we define the network
dynamics of the new method for primal-dual problems. In Section 4,
the numerical examples are simulated to show the reasonableness of our
theory and demonstrate the performance of our network. Finally, we
end this paper with conclusions in Section 5.

2. Preliminaries

2-1. Semidefinite programming

In this section, we present some notations and preliminary lemmas
that will be used in the proofs of the main results.

Let Sn denote the vector space of real symmetric n × n matrices.
Denote the dimension of this space by [3]

n2̄ =
n(n + 1)

2
.

The standard inner product on Sn is

A •B = trace(AB) =
∑
i,j

AijBij .

By X � 0 (X � 0), where X ∈ Sn, we mean that X is positive
semidefinite (positive definite). It is well known that

X ∈ Sn, X � 0, if hTXh ≥ 0, ∀h ∈ Rn.
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The Primal Semidefinite Programming (PSDP) problem is [3]

(PSDP ) min C •X
s.t Ai •X = bi, i = 1, . . . ,m (2.1)

X � 0, X ∈ Sn,

where C ∈ Sn, X ∈ Sn, Ai ∈ Sn, i = 1, . . . ,m, and b = [b1, b2, . . . , bm] ∈
Rm.

The dual problem for PSDP is in the form

(DSDP ) max
m∑
i=1

yibi

s.t
m∑
i=1

yiAi + Z = C, (2.2)

Z � 0, Z ∈ Sn,

where y is known as multiplier and Z is the dual slack variable.

Lemma 2.1. There exists a primal feasible point X � 0, and a dual
feasible point (y, Z) with Z � 0.

Lemma 2.2. The matrices Ai, i = 1, . . . ,m, are linearly independent,
i.e. they span an m-dimensional linear space in Sn.

Theorem 2.3. (Weak Duality) If X and (y,Z) are feasible in PSDP
and DSDP problems, respectively, then

C •X − bT y = X • Z ≥ 0.

Proof : We find

C•X−bT y = (

m∑
i=1

yiAi+Z)•X−bT y =

m∑
i=1

(Ai•X)yi+Z•X−bT y = X•Z

Moreover, since X is positive semidefinite, it has a square root X
1
2 , thus

X • Z = trace(XZ) = trace(X
1
2X

1
2Z) = trace(X

1
2ZX

1
2 ) ≥ 0.

�
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Using (2.1) and (2.2), first we transform the problem PSDP into a
linear programming (P) as follows:

(P ) min
2n∑
k=1

ckxk (2.3)

s.t
2n∑
k=1

aikxk = bi, i = 1, . . . ,m

where

ck = {cii, k = 1, . . . , n ; 2cij , k = n + 1, . . . , 2n},

xk = {xii, k = 1, . . . , n ; xij , k = n + 1, . . . , 2n},

aik = {aii, k = 1, . . . , n ; 2aij , k = n + 1, . . . , 2n},
for i = 1, . . . , n, j = 1, . . . , n, i < j.

The dual problem of problem (P) is as follows:

(D) max
m∑
i=1

yibi (2.4)

s.t
2n∑
k=1

yiaik ≤ ck

Consider the following constrained primal and dual linear program-
ming problems associated with the problems (2.3) and (2.4), repectively

(P ) min z(X ) = CTX (2.5)

s.t. AX = b,

the dual formulation is

(D) max h(Y) = btY (2.6)

s.t ATY ≤ C.

3. Primal-dual solution for the SDP using RNN

In this section we use the penalty function method to construct a
recurrent neural network based on Yashtini and Malek model for linear
programming [7]. The penalty function method is a popular technique
for optimization in which it is used to construct a single unconstrained
problem or a sequence of unconstrained problems. By applying this



A Recurrent Neural Network Model for Solving Linear Semidefinite Programming 209

approach to optimization problem (P ), we have the following uncon-
strained optimization problem

min
X∈F

E(X ,Y) = CTX + YT (AX − b),

where F is the feasible set of (P ).

Often, E(X ,Y) is called the energy function, where the decision vari-
ables in (P ) and (D) become state variables in the energy function.
They are actually time-dependent, i.e., X = X (t) and Y = Y(t), t ≥ 0.
Now minimization of the energy reads to

min
X (t)∈F

E(X (t),Y(t)) = CTX (t) + Y(t)T (AX (t)− b).

To solve the problem (P ), let us define the dynamics of the proposed
neural network to be [7]

dX
dt = C − ATY(t),

dY
dt = AX (t)− b,

(3.1)

where X (t) ≥ 0, Y(t) ≥ 0, t ≥ 0 and (X (t),Y(t))T is a state vector. The
solution of (3.1) exists and is unique for some given initial conditions.

Theorem 3.1. If problem (P ) has an optimal solution, the equilib-
rium point of dynamical system (3.1) equals with the optimal solution
of (P ).

Proof : Suppose problem (P ) has an optimal solution with optimal
value z∗. Then, the objective function z(X ) is bounded below over the
feasible region F by z∗, i.e.

z(X ) = CTX ≥ z∗, ∀ X ∈ F ,

and equality holds when X is the optimal solution of problem (P ). By
attention to the notes, mentioned at the beginning of this section, we
have

E(X (t),Y(t)) = CTX (t) + Y(t)T (AX (t)− b) ≥ CTX (t) = z(X (t)) ≥ z∗,

for all t ≥ 0 and arbitrary X (0) ∈ Rn. Equality holds when X (t) is
the optimal solution of problem (P ). Therefore, if (P ) has an optimal
solution then, this optimal solution is a minimizer for E(X (t),Y(t)).

Since the problem is linear, E(X (t),Y(t)) is convex. Thus, a suf-
ficient and necessary condition for optimal is: X ∗ is a minimizer of
E(X (t),Y(t)), if and only if, ∇X (t)E(X (t),Y(t)) = 0. This result shows
that X ∗ is a solution for dynamical system (3.1). Therefore, X ∗ is an
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equilibrium point of (3.1). �

Based on dynamical system (3.1), we propose the following recurrent
neural network model to solve SDP:

dX
dt

= C −AT (Y + k
dY
dt

), X ≥ 0, (3.2)

dY
dt

= A(X + k
dX
dt

)− b, Y ≥ 0. (3.3)

Coefficient k is a positive constant [7]. The main property of this
system is stated in the following theorem.

Theorem 3.2. If the neural network whose dynamics is described
by the differential equations (3.2) and (3.3) converges to a stable state,
then this solution will be the optimal solutions for the PSDP (2.1) and
its dual (2.2).

Proof : LetXi be the ith element of X . Equation (3.2) can be rewrit-
ten as:

dXi

dt
= [C −AT (Y + k

dY
dt

)]i , if Xi > 0 , ∀i (3.4)

dXi

dt
= max{[C −AT (Y + k

dY
dt

)]i, 0} , if Xi = 0 , ∀i (3.5)

Condition (3.5) is to ensure that X will be bounded from below by
zero.
Let X ∗ , Y∗ be limits of X and Y respectively, that is

lim
t→∞
X (t) = X ∗

lim
t→∞
Y(t) = Y∗

By stability of convergence, we have dX ∗

dt = 0 and dY∗

dt = 0. Equations
(3.4) and (3.5) then become:

0 = [C −ATY∗]i , if X ∗i > 0 (3.6)

0 = max{[C −ATY∗]i, 0} , if X ∗i = 0 (3.7)

In other words:

[C −ATY∗]i = 0 , if X ∗i > 0 (3.8)

[C −ATY∗]i ≤ 0 , if X ∗i = 0 (3.9)

Or:

C −ATY∗ ≤ 0 , ∀i (3.10)
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Similarly, taking the limit of (3.3) we will have:

AX ∗ − b ≤ 0 , (3.11)

Equations (3.10) and (3.11) show that X ∗ and Y∗ are the feasible
solutions for the problems (2.1) and (2.2).
Furthermore, from (3.8) and (3.9) we have:

X ∗i [C −ATY∗]i = 0 , ∀i (3.12)

or in vector form:

CTX ∗ −X ∗ATY∗ = 0 , (3.13)

Similarly, form (2.17) we can write

X ∗ATY∗ − bTY∗j = 0 , ∀j (3.14)

Thus, (2.19) and (2.20):

CTX ∗ = bTY∗ , (3.15)

By the DSDP Duality theory, from (3.15) and the feasibility of X ∗ and
Y∗ , we can conclude that X ∗ and Y∗ are the optimal solutions for the
PSDP and DSDP problems (2.1) and (2.2). �

4. Numerical examples

In following illustrative examples are solved to demonstrate the effec-
tiveness of the proposed recurrent neural network model. The software
MATLAB 7.10.0 is used to make this solutions.

Example 4.1. Consider the following SDP problem:

let n = 3 and m = 3,

A1 =

1 0 0
0 0 0
0 0 0

 , A2 =

0 0 1
0 1 0
1 0 0

 , A3 =

0 1 0
1 0 0
0 0 1

 ,

bT = (1, 0, 0).

Consider an objective function matrices C, as follows

C =

2 2 2
2 3 −2
2 −2 3


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Then the primal and dual optimal solutions, using neural network
model are:

X =

 1 −2 −2
−2 4 4
−2 4 4

 , y = (6, 0, 0), Z =

8 2 2
2 3 −2
2 −2 3

 ,

It can be checked that the primal-dual solutions are equal to the exact
solutions.

Example 4.2. Consider the SDP problem described by:

let n = 5 and m = 5,

A1 =


2 1 −1 3 6
0 −1 2 −4 0
5 2 −5 1 −2
3 0 0 1 −2
1 −6 0 1 −4

 , A2 =


−3 0 1 4 −2
0 7 −3 8 2
1 0 −3 −2 −5
−1 0 2 −3 0
−4 0 8 −1 7

 ,

bT = (4, 3, 4,−5,−5),

and

C =


2 2 2 −1 1
2 3 −2 0 2
2 −2 3 2 0
0 0 −2 −3 0
−1 3 0 1 2

 .

We can obtain directly the components of the solution X, Z and y.

X =


1 −2 −2 4 6
−2 4 4 1 12
−2 4 4 −4 0
1 0 4 0 0
3 4 5 0 2

 , Z =


8 2 2 13 4
2 3 −2 8 3
2 −2 3 6 10
11 0 −4 1 −8
0 3 −6 1 −4

 ,

y = (4, 0, 6, 1, 7).

In this example, it can be checked that the primal-dual solutions are
equal to the numerical results obtained by Matlab toolbox for solving
linear programming which used the Runge-Kutta triple BS (2,3) method.
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5. Conclusions

In this paper, we have proposed a recurrent neural network approach
to linear semidefinite programming. Based on a primal-dual reformula-
tion of the problem. It is shown that there exists a primal-dual transfor-
mation between the (PSDP)-(DSDP) problems and the proposed neural
network model.
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