An application of Fibonacci numbers into infinite Toeplitz matrices
E.E.
KARA
Department of Mathematics, Bilecik University,11210, Bilecik, Turkey
author
M.
BASARIR
Department of Mathematics, Sakarya University, 54187, Sakarya, Turkey
author
text
article
2012
eng
The main purpose of this paper is to define a new regular matrix by
using Fibonacci numbers and to investigate its matrix domain in the
classical sequence spaces $ell _{p},ell _{infty },c$ and $c_{0}$,
where $1leq p
Caspian Journal of Mathematical Sciences
University of Mazandaran
1735-0611
1
v.
1
no.
2012
http://cjms.journals.umz.ac.ir/article_1_f744f03689589110aa8327b974f00e4a.pdf
Cone normed spaces
M.
ESHAGHI GORDJI
Department of Mathematics, Semnan University, P. O. Box 35195-363, Semnan, Iran
author
M.
RAMEZANI
Department of Mathematics, Semnan University, P. O. Box 35195-363, Semnan, Iran
author
Hamid
KHODAEI
Department of Mathematics, Semnan University, P. O. Box 35195-363, Semnan, Iran
author
H.
BAGHANI
Department of Mathematics, Semnan University, P. O. Box 35195-363, Semnan, Iran
author
text
article
2012
eng
In this paper, we introduce the cone normed spaces and cone bounded linear mappings. Among other things, we prove the Baire category theorem and the Banach--Steinhaus theorem in cone normed spaces.
Caspian Journal of Mathematical Sciences
University of Mazandaran
1735-0611
1
v.
1
no.
2012
http://cjms.journals.umz.ac.ir/article_2_9d4bc689eafc39ad8c16bef549e1789b.pdf
Existence of positive solutions for fourth-order boundary value
problems with three- point boundary conditions
N.
NYAMORADI
Department of Mathematics, Faculty of Sciences, Razi University, 67149 Kermanshah,
Iran.
author
text
article
2012
eng
In this work, by employing the Krasnosel'skii fixed point theorem, we study the existence of positive solutions of a three-point boundary value problem for the following fourth-order differential equation begin{eqnarray*} left { begin{array}{ll} u^{(4)}(t) -f(t,u(t),u^{prime prime }(t))=0 hspace{1cm} 0 leq t leq 1, & u(0) = u(1)=0, hspace{1cm} alpha u^{prime prime }(0) - beta u^{prime prime prime }(0)=0, hspace{1cm} u^{prime prime }(1)- alpha u^{prime prime }(eta)=0, & end{array} right. end{eqnarray*} where $beta > 0, 0< eta 0$.
Caspian Journal of Mathematical Sciences
University of Mazandaran
1735-0611
1
v.
1
no.
2012
http://cjms.journals.umz.ac.ir/article_3_459da43ddb149ea17d0587b414c834f5.pdf
0n removable cycles in graphs and digraphs
A.B.
ATTAR
Department of Mathematics University of thi-qar collage of education for pure sciences
author
text
article
2012
eng
In this paper we define the removable cycle that, if $Im$ is a
class of graphs, $Gin Im$, the cycle $C$ in $G$ is called
removable if $G-E(C)in Im$. The removable cycles in Eulerian
graphs have been studied. We characterize Eulerian graphs which
contain two edge-disjoint removable cycles, and the necessary and
sufficient conditions for Eulerian graph to have removable cycles
have been introduced. Further, the even and odd removable cycles in
Eulerian graphs have also been studied. The necessary and sufficient
conditions for regular graphs (digraphs) to have a removable cycles
have been characterized. We also define, the removable cycle class.
Caspian Journal of Mathematical Sciences
University of Mazandaran
1735-0611
1
v.
1
no.
2012
http://cjms.journals.umz.ac.ir/article_4_751c5e8b91a574d308d24a32c0377adc.pdf
Differential transformation method for solving a neutral functional-differential equation
with proportional delays
A.
GOKDOGAN
author
M.
MERDAN
author
A.
YILDIRIM
author
text
article
2012
eng
In this article differential transformation method (DTMs) has been used to solve neutral functional-differential equations with proportional delays. The method can simply be applied to many linear and nonlinear problems and is capable of reducing the size of computational work while still providing the series solution with fast convergence rate. Exact solutions can also be obtained from the known forms of the series solutions. The results show that the method is effective, suitable, easy, practical and accurate.
Caspian Journal of Mathematical Sciences
University of Mazandaran
1735-0611
1
v.
1
no.
2012
http://cjms.journals.umz.ac.ir/article_5_560f72464b2ef8adfe141ec1ad36b55d.pdf
Complexition and solitary wave solutions of the (2+1)-dimensional dispersive long wave
equations
H.
TRIKI
Radiation Physics Laboratory, Dep. of Physics, Badji Mokhtar University, ALGERIA
author
A.
BISWAS
Department of Mathematical Sciences, Delaware State University, Dover, USA
author
text
article
2012
eng
In this paper, the coupled dispersive (2+1)-dimensional long wave equation is studied. The traveling wave hypothesis yields complexiton solutions. Subsequently, the wave equation is studied with power law nonlinearity where the ansatz method is applied to yield solitary wave solutions. The constraint conditions for the existence of solitons naturally fall out of the derivation of the soliton solution.
Caspian Journal of Mathematical Sciences
University of Mazandaran
1735-0611
1
v.
1
no.
2012
http://cjms.journals.umz.ac.ir/article_6_96eddfb1f219527489aaf75be241e594.pdf
A unique continuous solution for the Bagley-Torvik equation
K.
SAYEVAND
Faculty of Basic Sciences, Department of Mathematics, University of Malayer, Malayer,
Iran
author
F.
MIRZAEE
Faculty of Basic Sciences, Department of Mathematics, University of Malayer, Malayer,
Iran
author
text
article
2012
eng
In this paper the Bagley-Torvik equation as a prototype fractional differential equation with two derivatives is investigated by means of homotopy perturbation method. The results reveal that the present method is very effective and accurate.
Caspian Journal of Mathematical Sciences
University of Mazandaran
1735-0611
1
v.
1
no.
2012
http://cjms.journals.umz.ac.ir/article_7_25f25bced725a0360ba57b13d768546e.pdf